

Mining valuable data in observations of solar active regions

Jorge AMAYA, Hanne Baeke, Orestis Karapiperis, Sara Jamal, Giovanni Lapenta

KU Leuven, Mathematics Department, CmPA, Belgium jorge.amaya@kuleuven.be

Better identification of the properties associated to flaring activity in active regions to perform better flare forecasts

WORK ALREADY DONE

- Multiple papers based on the SHARP magnetic field features The most famous work in Europe is by the Flarecast project [Florios et al., 2018, Massone et al. 2018,...].
- Some papers use machine learning [Benvenuto et al., 2017, Liu et al. 2017, Nishizuka et al. 2017, Chen et al. 2019,...].
 - Others use White light classifications [McCloskey et al., 2018,...].
 - A few authors have included image analysis in their forecasting [Jonas et al. 2018,...]

Project this N-dimensional representation of the ARs into a latent space that is easier to work with: separable, sparse, non-convex.

We do this already in other domains: project the data into an orthogonal base where all the points are linearly dependent on a few number of components.

- Multivariate Time Series MVTS extracted from SHARP regions [Angryk et al. 2020]
- 24 parameters from May 2010 December 2018 (24th solar cycle)

	Complete Data	Data without NaN	Sampled Data	
nb data points	2 906 658	2 609 953	57 444	
nb No flares		2 602 509	50 000	
nb C-flares		6717	6717	
nb M-flares		680	680	
nb X-flares		47	47	

OUTLIER REMOVAL

CHECKING OUTLIERS

	Standardized data	Outliers HDBSCAN	Outliers MEANPOT	% outliers in data	
nb data points	57 444	586	33	1.08 %	
nb No-flares	50 000	214	30	0.49 %	
nb C-flares	6717	282	2	4.23 %	
nb M-flares	680	80	1	11.91 %	
nb X-flares	47	10	0	21.28 %	

Figure 2.9: Magnetic field components for SHARP with HARPNUM 1449, measured at 2012-03-02, 17:36:00 International Atomic Time (TAI).

DATA DISTRIBUTIONS

UNNECESSARY REPETITION OF DATA

$$Y_{1} = \theta_{10} + \theta_{11}F_{1} + \theta_{12}F_{2} + e_{1}$$

$$Y_{2} = \theta_{20} + \theta_{21}F_{1} + \theta_{22}F_{2} + e_{2}$$

$$Y_{3} = \theta_{30} + \theta_{31}F_{1} + \theta_{32}F_{2} + e_{3}$$

...

 $Y_{24} = \dots$

INTRODUCE SPARSITY: SPARSE AUTOENCODERS

*

H7

H2

H3

25

30

H4

Hidden node number

 $\lambda = 0.03$ $\lambda = 0.05$

 $-\lambda = 0.08$ $\lambda = 0.1$

H5

H6

TRANSFORMED DATA DISTRIBUTIONS

KULEUVEN September 7, 2021

SPARSE FEATURES COVARIANCE MATRIX

KULEUVEN September 7, 2021

SUPERVISED KNN CLUSTERING

Figure 4.4: Normalized confusion matrix for KNN, for the over-sampled data set with SMOTE to 6000 M- and X-flares.

UNSUPERVISED K-MEANS

Figure 4.18: Clustering results of Kmeans, for the randomly under-sampled and SMOTE over-sampled data set to 6000 samples in each class. The percentage of each flare included in the four clusters is shown. Normalization is performed per flare type.

Our work:

[Liu et al., 2017]

ALTERNATIVE TO SHARP PARAMETERS

Variational Autoencoders

DEMONSTRATION OF RECONSTRUCTIONS

64 hidden units. Input/output image: 128 x 256 x 3

Original AR

VAE reconstruction

