CONNECTING SOLAR FLARE HARD X-RAY SPECTRA TO IN-SITU ELECTRON SPECTRA USING RHESSI AND Stereo/Sept observations

N. Dresing^{1,7}, A. Warmuth², F. Effenberger^{3,4}, K.-L. Klein⁵, S. Musset⁶, L. Glesener⁶, M. Bruedern⁷

Department of Physics and Astronomy, University of Turku, Finland
Leibniz-Institut für Astrophysik Potsdam (AIP), Potsdam, Germany
Institut für Theoretische Physik, IV, Ruhr-Universität Bochum, 44780 Bochum, Germany
4 Bay Area Environmental Research Institute, CA, USA
5 LESIA – Observatoire de Paris, Univ. PSL, CNRS, Sorbonne Univ., Univ. de Paris, Meudon, France
6 University of Minnesota, Minneapolis, MN, USA
7 IEAP, University of Kiel, Germany

UNIVERSITY OF TURKU N. Dresing

THE CHOICE OF THE CORRECT SPECTRAL PART OF THE IN-SITU SPECTRUM

UNIVERSITY OF TURKU

N. Dresing

Hard X-Ray (HXR) spectrum observed by RHESSI

Is the footprint of the flare

Intensity ((cm²s sr MeV)⁻¹)

10⁴ 10³ 10²

10

L0⁻

Sun to 1AU?

THE CHOICE OF THE CORRECT SPECTRAL PART OF THE IN-SITU SPECTRUM

Hard X-Ray (HXR) spectrum observed by RHESSI

N. Dresing

UNIVERSITY OF TURKU

Intensity ((cm²ssr MeV)⁻ 10^{3}

Is the footprint of the flare acceleration still observed at 1AU?

Sun to 1AU?

1) The generation of Langmuir turbulence by a few keV electrons (which results into type III radio bursts). This causes a depression of the low energy part of the spectrum.

MODIFICATIONS OF THE ORIGINAL SPECTRUM

1) The generation of Langmuir turbulence by a few keV electrons (which results into type III radio bursts). This causes a depression of the low energy part of the spectrum.

MODIFICATIONS OF THE ORIGINAL SPECTRUM

- 1) The generation of Langmuir turbulence by a few keV electrons (which results into type III radio bursts). This causes a depression of the low energy part of the spectrum.
- 2) Pitch-angle scattering which is stronger at higher energies (≥ 100 keV). This causes a 'loss' of high energy electrons in the peak spectrum.

UNIVERSITY OF TURKU N. Dresing

MODIFICATIONS OF THE ORIGINAL SPECTRUM

- 1) The generation of Langmuir turbulence by a few keV electrons (which results into type III radio bursts). This causes a depression of the low energy part of the spectrum.
- 2) Pitch-angle scattering which is stronger at higher energies (≥ 100 keV). This causes a 'loss' of high energy electrons in the peak spectrum.

It is therefore possible that two different kinds of spectral breaks exist. These were not yet clearly resolved in a single spacecraft measurement and could also overlap.

UNIVERSITY OF TURKU N. Dresing

MODIFICATIONS OF THE ORIGINAL SPECTRUM

- 1) The generation of Langmuir turbulence by a few keV electrons (which results into type III radio bursts). This causes a depression of the low energy part of the spectrum.
- 2) Pitch-angle scattering which is stronger at higher energies ($\geq 100 \text{ keV}$). This causes a 'loss' of high energy electrons in the peak spectrum.

It is therefore possible that two different kinds of spectral breaks exist. These were not yet clearly resolved in a single spacecraft measurement and could also overlap.

UNIVERSITY OF TURKU N. Dresing

MODIFICATIONS OF THE ORIGINAL SPECTRUM

nina.dresing@utu.fi

Using RHESSI HXR flare observations and STEREO/SEPT nearrelativistic electron observations between 2007 and 2018 we find 17 common events which allow for a spectral comparison

GOES	flare				$E_{\rm b}$	
class	location	γ	δ_1	δ_2	[keV]	s/c
B5.1	S05W61	3.2 ± 0.09	3.0 ± 1.0	3.8 ± 0.6	79	Α
B5.1	S05W61	3.2 ± 0.09	2.7 ± 1.0	3.6 ± 0.9	107	В
B6.8	S05W64	4.1 ± 0.26	3.6 ± 0.3	-	-	В
B6.8	S05W64	4.1 ± 0.26	3.2 ± 0.6	3.9 ± 1.3	98	Α
C7.2	S28W47	2.7 ± 0.04	2.0 ± 0.1	3.0 ± 0.2	122	В
C6.2	N22E00	3.4 ± 0.10	2.4 ± 0.2	-	-	В
C1.0	S21E02	3.7 ± 0.06	3.6 ± 0.3	-	-	В
C1.5	S23W01	3.9 ± 0.08	2.9 ± 0.3	4.5 ± 0.5	118	В
B7.8	S34E21	4.3 ± 0.11	1.6 ± 1.7	3.4 ± 1.0	69	В
C9.1	S15E41	4.1 ± 0.05	2.9 ± 0.6	5.1 ± 2.3	195	В
C1.5	N21E20	4.9 ± 0.53	4.4 ± 0.4	6.4 ± 2.0	87	В
C3.0	N20E26	3.4 ± 0.03	2.7 ± 0.4	4.0 ± 0.9	110	В
C1.8	N13E89	4.9 ± 0.10	4.8 ± 0.5	-	-	В
C2.7	N13E67	4.4 ± 0.03	2.9 ± 0.2	4.9 ± 0.6	106	В
C3.4	N15E64	3.7 ± 0.03	2.4 ± 0.3	4.9 ± 0.6	90	В
C2.6	N17E56	4.3 ± 0.09	2.8 ± 0.6	3.7 ± 0.4	90	В
C5.4	N16E11	4.3 ± 0.14	3.6 ± 0.3	5.5 ± 0.7	104	В
C3.3	S12E81	5.9 ± 0.20	3.1 ± 0.7	4.0 ± 0.7	101	В
C8.8	S19E90	3.5 ± 0.05	2.6 ± 0.5	4.0 ± 1.4	90	В
	GOES class B5.1 B5.1 B6.8 B6.8 C7.2 C6.2 C1.0 C1.5 B7.8 C9.1 C1.5 B7.8 C9.1 C1.5 C3.0 C1.5 C3.0 C1.8 C2.7 C3.4 C2.7 C3.4 C2.6 C5.4 C3.3 C8.8	GOESflareclasslocationB5.1S05W61B5.1S05W64B6.8S05W64B6.8S05W64C7.2S28W47C6.2N22E00C1.0S21E02C1.5S23W01B7.8S34E21C9.1S15E41C1.5N21E20C3.0N20E26C1.8N13E89C2.7N13E67C3.4N15E64C2.6N17E56C5.4N16E11C3.3S12E81C8.8S19E90	GOESflare location γ B5.1S05W61 3.2 ± 0.09 B5.1S05W61 3.2 ± 0.09 B6.8S05W64 4.1 ± 0.26 B6.8S05W64 4.1 ± 0.26 B6.8S05W64 4.1 ± 0.26 C7.2S28W47 2.7 ± 0.04 C6.2N22E00 3.4 ± 0.10 C1.0S21E02 3.7 ± 0.06 C1.5S23W01 3.9 ± 0.08 B7.8S34E21 4.3 ± 0.11 C9.1S15E41 4.1 ± 0.05 C1.5N21E20 4.9 ± 0.53 C3.0N20E26 3.4 ± 0.03 C1.8N13E89 4.9 ± 0.10 C2.7N13E67 4.4 ± 0.03 C3.4N15E64 3.7 ± 0.03 C2.6N17E56 4.3 ± 0.14 C3.3S12E81 5.9 ± 0.20 C8.8S19E90 3.5 ± 0.05	GOESflare location γ δ_1 B5.1S05W61 3.2 ± 0.09 3.0 ± 1.0 B5.1S05W61 3.2 ± 0.09 2.7 ± 1.0 B6.8S05W64 4.1 ± 0.26 3.6 ± 0.3 B6.8S05W64 4.1 ± 0.26 3.2 ± 0.6 C7.2S28W47 2.7 ± 0.04 2.0 ± 0.1 C6.2N22E00 3.4 ± 0.10 2.4 ± 0.2 C1.0S21E02 3.7 ± 0.06 3.6 ± 0.3 C1.5S23W01 3.9 ± 0.08 2.9 ± 0.3 B7.8S34E21 4.3 ± 0.11 1.6 ± 1.7 C9.1S15E41 4.1 ± 0.05 2.9 ± 0.6 C1.5N21E20 4.9 ± 0.53 4.4 ± 0.4 C3.0N20E26 3.4 ± 0.03 2.7 ± 0.4 C1.8N13E89 4.9 ± 0.10 4.8 ± 0.5 C2.7N13E67 4.4 ± 0.03 2.9 ± 0.2 C3.4N15E64 3.7 ± 0.03 2.4 ± 0.3 C2.6N17E56 4.3 ± 0.14 3.6 ± 0.3 C3.3S12E81 5.9 ± 0.20 3.1 ± 0.7 C8.8S19E90 3.5 ± 0.05 2.6 ± 0.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

STEREO ELECTRON EVENTS WITH ASSOCIATED RHESSI HXR FLARE OBSERVATIONS

Strauss et al. (2020) therefore suggest to use the spectral range between ~50-100 keV as it might be least modified by transport effects

Unfortunately, many spectral breaks of are lying in the suggested range making a choice between the two spectral indices difficult.

Dresing et al. (2021)

nina.dresing@utu.fi

10

CORRELATING HXR AND IN-SITU ELECTRON SPECTRAL IN

- Correlated HXR spectral index γ separately with the in-situ spectral index δ_{low} and δ_{high}
- Good correlation of ~0.8 for both sets of value pairs
- Alignment along the thin-target solution (shift toward harder in situ electron spectra) when using δ_{low}
- Shift toward the thick-target solution when using δ_{high} .

UNIVERSITY OF TURKU N. Dresing

 $oldsymbol{\delta}_{ ext{low}}$

8 (low)

electron

in-situ

 $\delta = (0.74 \pm 0.11) \gamma + (0.04 \pm 0.01)$

 $\delta = (0.83 \pm 0.11) \gamma + (-0.24 \pm 0.38)$

photon spectral index γ

C: 0.50±0.19

- C: 0.80±0.08

THE ROLE OF THE ANISOTROPY

When only using those events with medium to high anisotropies we find that the correlations improve

Transport effects can diminish the imprint of the flare

STEREO/SEPT sectored intensities showing large anisotropy:

ma.u.comgwulu.n

N. Dresing

N. Dresing,

A. Warmuth, F. Effenberger, K.-L. Klein, S. Musset, L. Glesener, M. Bruedern

• We find clear correlations of $c \approx 0.8$ between HXR and in-situ electron spectra (despite the frequent presence of CMEs and the observed electron onsets delays)

• The choice of the in-situ spectral index for comparison with the HXR spectrum is not straightforward and can strongly influence the results (thin-target vs. thick-target solution)

Transport effects can diminish the imprint of injected

This study is accepted for publication in A&A: Dresing et al. (2021)

