

R. Jarolim¹, A. M. Veronig^{1,2}, W. Pötzi², T. Podladchikova³, A. Diercke^{4,5}, C. Kuckein^{5,6,7}, S. J. González-Manrique^{6,7,8}, M. Ziener and C. Denker⁵

¹University of Graz, Institute of Physics, Universitätsplatz 5, 8010 Graz, Austria

²University of Graz, Kanzelhöhe Observatory for Solar and Environmental Research, Kanzelhöhe 19, 9521 Treffen am Ossiacher See, Austria

³Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia

⁴National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303, USA

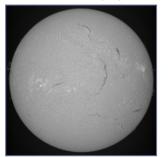
⁵Leibniz Institute for Astrophysics Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany ⁶Instituto de Astrofísica de Canarias 38205 C/ Vía Láctea, s/n, La Laguna, Tenerife, Spain ⁷Departamento de Astrofísica, Universidad de La Laguna 38205, La Laguna, Tenerife, Spain

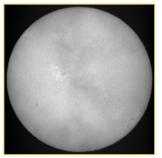
⁸Astronomical Institute, Slovak Academy of Sciences (AISAS) 059 60 Tatranská Lomnica, Slovak Republic

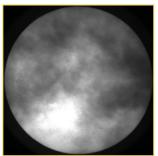
ESPM 08-09-2021

This research has received financial support from the European Union's Horizon 2020 research and innovation program under grant agreement No. 824135 (SOLARNET).

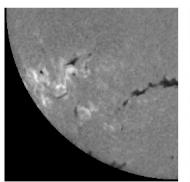
robert.jarolim@uni-graz.at

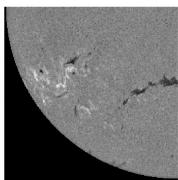


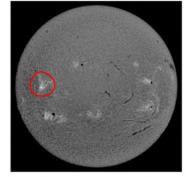



Introduction

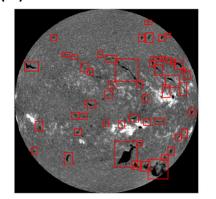
- Ground-based observations
 - Merging multi-site observations can provide a continuous data series (Network telescopes)
 - Correction of atmospheric degradations, instrumental characteristics in real-time required for data merging
 - Development of automated methods to analyze the data
- Artificial Intelligence Deep Learning
 - Data-driven method that uses **input-output pairs** to find a **general mapping** function
 - Provides **state-of-the-art results** in image classification, enhancement, segmentation, etc.
- Automated methods for the next generation of network telescopes
 - SOLARNET **SPRING** ground-based full-disk solar network telescope

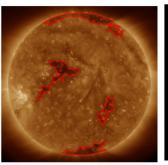

(1) Solar Image Quality Assessment

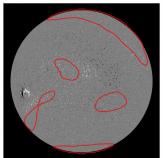




(2) Image Enhancement

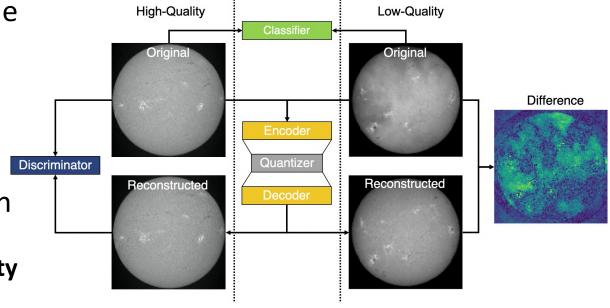



(3) Flare Detection



(4) Filament Detection

(5) Coronal Hole Detection



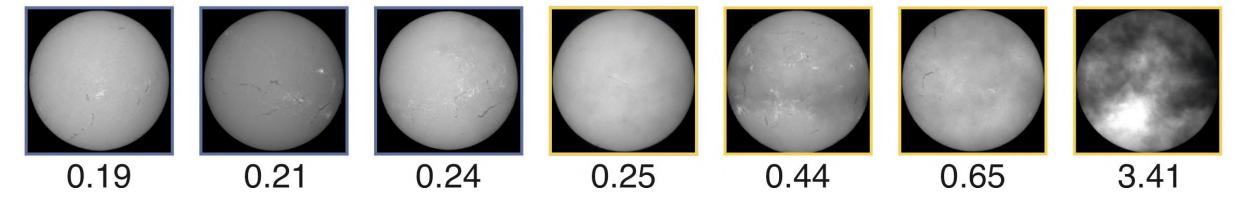
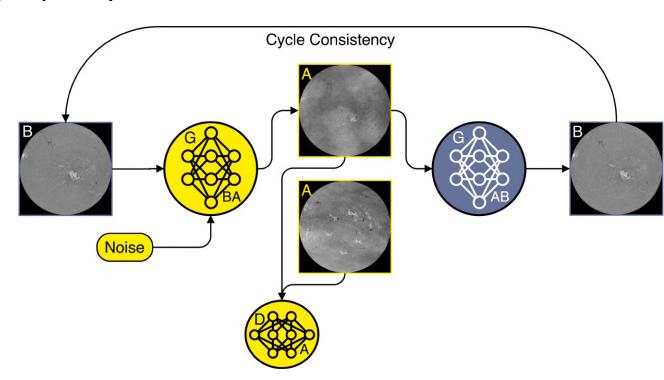


Image-quality assessment (Jarolim et al. 2020)

- Objective image quality assessment to provide consistent data stream
 - Quality degradations are diverse (e.g., clouds, instrumental errors)
 - Continuous quality metric for frame selection (multi-site selection)
- Generative Adversarial Network (GAN) to learn the appearance of high-quality observations
 - Quality metric based on deviation from high-quality image distribution
 - Human-like assessment: 98.5% agreement

(from: Jarolim et al. 2020, A&A 643 A72)

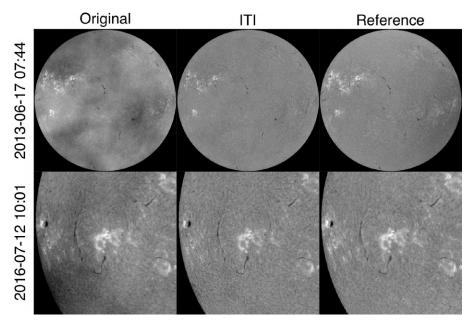


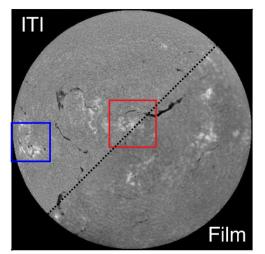
Instrument-To-Instrument translation

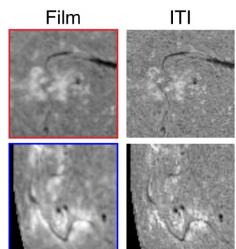
(Jarolim et al. 2021b; in prep.)

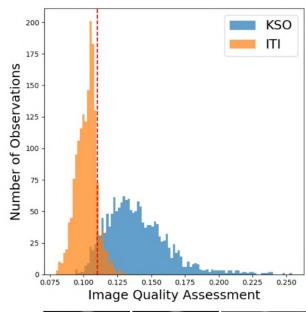
ITI

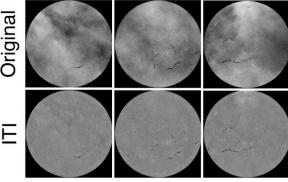
- General framework for image enhancement and data series restoration
 - Unpaired image translation (no temporal/spatial overlap required)
 - Infers image enhancement from real high-quality observations
- Competitive learning with two Neural Networks
 - 1. Use high-quality(B) image to create synthetic low-quality(A) image
 - 2. Verify that synthetic image corresponds to the low-quality domain
 - 3. Reconstruct original image from synthetic degraded image
 - 4. Verify reconstruction (cycle consistency)
- Applicable to real low-quality observations after training



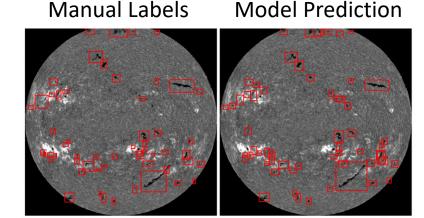


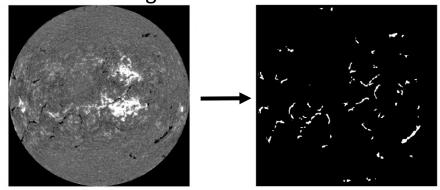



Instrument-To-Instrument translation

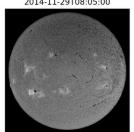

- Real-time correction of atmospheric degradations
 - KSO H α observations
 - Mitigation of clouds
 - Adjustment of saturations
 - Quality increase
- Restoration of photographic film scans
 - Adjustment to CCD quality
 - Unified KSO H α series (1973-now)

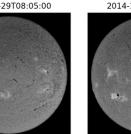
Quality distribution of original and enhanced images

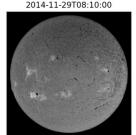


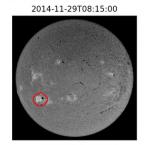


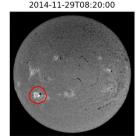

Automated Detection Methods

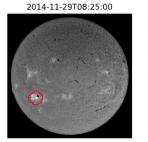

- Solar Flare Detection (in progress)
 - **Spatio-temporal** neural network
 - GONG $H\alpha$ multi-site observations
 - Detection of up to B-class flares across the full disk
 - **90%** of >C2 flares **verified** with other catalogs
- Automated solar filament detection (Diercke et al.; in prep.)
 - **Hlpha** ChroTel observations (962 manually labeled full-disk observations)
 - Bounding box classification (YOLOv5) → pixel-wise filament segmentation (UNET)
- Provides event catalogs and real-time monitoring of the Sun

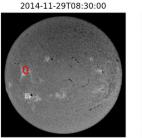


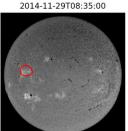

Segmentation Model

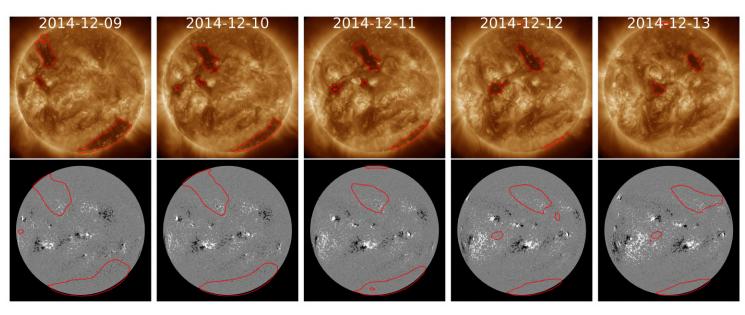












Extended detection capabilities (Jarolim et al., 2021a)

- Coronal holes appear as dark structures in satellite-based EUV and X-ray filtergrams
 - Ground-based observation limited
 - Neural networks can learn to perceive data differently than humans
- Use EUV segmentation maps for training
 - LOS magnetograms: 66.3%
 - SDO/AIA 304 Å channel: 83.9%
 - (accuracy of detected CHs)

Example of coronal hole detection from LOS magnetograms (bottom) and reference detections from the SDO EUV channels (top). (from Jarolim et al. 2021a, A&A 652 A13; CHRONNOS)

Supplementary Material/References

- Videos available online
 - (https://indico.ict.inaf.it/event/794/contributions/9678/)
 - 1. Image quality assessment for a full observing day
 - 2. ITI translation for SDO/HMI \rightarrow Hinode/SOT continuum
 - 3. Coronal hole detections for the different SDO channels + magnetogram

Updates

- https://www.researchgate.net/profile/Robert-Jarolim
- https://twitter.com/JarolimRobert

References

- Jarolim R, Veronig AM, Pötzi W, Podladchikova T. (2020). Image-quality assessment for full-disk solar observations with generative adversarial networks. *Astronomy & Astrophysics*, 643, A72. (https://doi.org/10.1051/0004-6361/202038691)
- Jarolim R, Veronig AM, Hofmeister S, Heinemann SG, Temmer M, Podladchikova T, Dissauer K. (2021a). Multichannel coronal hole detection with convolutional neural networks. *Astronomy & Astrophysics*, 652, A13. (https://doi.org/10.1051/0004-6361/202140640)
- Jarolim R, Veronig AM, Pötzi W, Podladchikova T. (2021b). Instrument-to-Instrument translation: A deep learning framework for data set restoration of solar observations. Manuscript in preparation.
- Diercke A, Jarolim R, Kuckein C, González-Manrique SJ, Ziener M, Veronig A and Denker C. Automatic Extraction of Polar Crown Filaments Using Machine Learning Techniques. Manuscript in preparation.