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Solar flares and Coronal Mass Ejections (CMEs) have dominant roles in space
weather (Eastwood et al. 2017, Temmer 2021).

It is vital to further develop existing prediction capabilities through the
identification of observable precursors of flares and CMEs.

Understanding the physical processes of precursors is still a challenging task.
The most intense solar eruptions originate from the most magnetically complex,
and highly twisted 6-type active regions (Georgoulis et al. 2019).

Focus on the observational property of magnetic helicity flux in 6-type ARs.
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Magnetic helicity flux

Elsasser (1956) and Woltjer (1958) the magnetic helicity:
H= j A-Bd3x
%

H is conserved in iMHD, when the volume of integration is bounded by a
magnetic surface.

H arises from the topological properties of the field, i.e., from the linking,
knotting, and twisting of field lines.

Berger (1984):
dH

dt

=2 j (A, - By)v,,dS — 2 J (A, - ¥,)B,dS
S S
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Korsos et al. (2020):

dH
dt

=2 j (A, - Bp)v,,dS —2 J (A, - ¥1,)B,dS

S S EM S SH

EM comes from the twisted magnetic flux tubes emerging into the solar atmosphere.
SH comes from the shearing and braiding of the field lines, which is caused by the
tangential motions on the solar surface.

Investigated the evolution of EM/SH/T for g flaring and 3 non-flaring ARs.
Relationship between the oscillatory behavior of EM/SH/T and the associated flare
activities.

Their conjecture was that EM/SH/'I" have a common period before flare onset.4
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Data

« Random sample of 14 flaring and 14 non-flaring Ars.

(SHARP — hmi.sharp_cea_720s)

« The ARs are selected based on the following criteria:

the angular distance of an AR from the central meridian is +60°, to obtain the best
possible quality data (Bobra et al. 2014).

the AR must have a 8-spot configuration.

the flaring ARs must be the location of at least one X-class flare.

the non-flaring ARs should not be the host of flares larger than Ms5.

the AR cannot be associated with fast CMEs (Here, we define =750 km s™).
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Wavelet analysis

Wavelet analysis on both original and smoothed time series of EM/SH/T.
Smoothing was done by 24 hrs that was subtracted from the original data in
order to damp out the 12 and 24 hrs SDO artifact (Smirnova et al. 2013).
From the wavelet power spectrum (WPS), global power spectra (GPS) are
calculated through averaging the WPS over time.

10 level.

Local maxima in the WPS using an implementation of the 0-th dimensional

persistent homology method (Huber 2021).
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EM component

« We also determined the harmonics for each case of the period peaks of the

oscillatory behaviour of EM/SH/T components.

« From this, we can see that only the peaks appearing in the EM of flaring
ARSs are the ones that follow the properties of the harmonics well for an

oscillatory waveguide system.

* Such a clear harmonic property is not detected in the different flux

components of flaring or non-flaring ARs.
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JELTE 19002y Summary and Conclusions
'- Analyzed the EM/SH/T evolution of 14 flaring and 14 non-flaring ARs.

« For flaring and non-flaring ARs, the EM/SH/T periodicities occur in bands.

(1) 2-9 hours, (i1) 11-14 hours, and (iii) 19-21 hours.
» The distribution of EM/SH/T peak periodicities were fitted using GMM.
 The GMM-fitted EM peaks for flaring ARs shows 1/n-dependence (n=1,2,3,...).
» The correlation between the central periodicities of the flaring and non-flaring ARs
shows: EM behaves significantly differently for flaring regions.
* The presence of long periods in EM and T suggests that the EM component

may play a crucial role in the formation of flares, especially when:

the AR has a 8-spot,
shorter oscillatory periods appear in the EM flux data, and

these periods show the presence of a harmonic oscillatory resonator. 11



