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Motivation

Fast kink waves have been shown to trigger Kelvin-Helmholtz instability (KHI) on
the boundary of a cylindrical structure (e.g. solar coronal loop): see [1] and [2].

Figure taken from [1].

• Oscillating velocity field creates shear, which is greatest at ”top” and ”bottom”
ends in transverse cut

• Numerical simulations have shown transverse wave-induced KHI to develop

• Analytical Cartesian models of local stability of interface point out it is always
unstable, either to KHI if shear is great enough or to parametric resonance in-
stability between background driver and produced perturbations

Goal: What about (standing) slow waves? Background magnetic field and velocity
are then parallel. Can they similarly induce KHI or parametric instability? Or is
magnetic field too strong in a realistic environment?

Model

Local model for the boundary of a flux tube harboring a standing slow wave, as
a straight interface in Cartesian coordinates separating two different homogeneous
plasmas with oscillating background velocity fields vvv0 = V0 cos(ω0t)111z and aligned
constant background magnetic fields BBB0 = B0z111z.

Analytical derivations

• Started from compressible linearized ideal MHD equations

• Derived equation for compression term ∇ · ξξξ (with ξξξ Lagrangian displacement) in a homo-
geneous plasma of infinite extent with an oscillating vvv0 aligned with BBB0

• Ratio m := mi/me between internal and external ”normal wavenumbers” depends on ky
and kz, contrary to incompressible plasma where mi/me→ 1

• Derived equation governing evolution of normal displacement component ξr over time:
Mathieu equation with normalized parameters
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where κz = kzvAi/ω0 is longitudinal wavenumber, vA = vAe/vAi is ratio of Alfvén speeds,
r = ρ0e/ρ0i is ratio of densities and MA = (V0i − V0e)/vAi is Alfvén Mach number.

– Limit of no background flow (vvv0 = 000): recover known dispersion relation of surface
modes (with frequency ν):
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– Limit of constant background flow: dispersion relation
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↪→ can be unstable to KHI, if ν2 < 0, i.e. if M2
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– Limit of weak shear in oscillating flow (corresponds to q � 1): dispersion relation
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, i.e. if a < 0

↪→ can also be unstable to parametric instability, when there is a resonance with the
driving frequency: this happens when a = j2 for a j ∈ Z0

Stability diagram of Mathieu equation (see figure on the right) shows stability of its solution
with respect to the parameters a and q: white is stable, grey is unstable
⇒ From expressions of a and q above, one can derive that all modes have to lie between positive
a-axis and ”minimum slope”-line with equation
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conditions MA minimum slope
coronal 0.066 11415
photospheric 0.066 1450
photospheric 0.36 46
coronal 1 47
photospheric 1 4.25

Results

To the left is a table summarizing the value of the slope of the ”minimum slope”-line
given by previous equation, for different conditions: standing slow wave in a coronal
loop (MA = 0.066), standing slow wave in a photospheric pore (MA = 0.066),
and resonant slow waves in photospheric pore (MA = 0.36). The blue line in the
diagram above has slope 46. As comparison, values for the minimum slope for
the unrealistically high value of MA = 1 have been added in both coronal and
photospheric conditions. The red line in the diagram has slope 4.25.

Conclusion We see the modes lie in a region of almost uniform stability, at least
with respect to KHI. From this local model, we conclude cylindrical flux tubes (e.g.
coronal loop, photospheric pore) are stable with respect to KHI in both coronal
and photospheric conditions, even for resonant slow waves: the alignment of mag-
netic field with velocity prevents KHI from starting, and the oscillation doesn’t help
destabilizing the setup with respect to KHI. Only the parametric instability seems
possible, but the question is whether these happen in reality: indeed, modes are
discrete in the diagram and might therefore avoid the tiny parametrically unstable
regions.
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