
Department of Space and Climate Physics, Mullard Space Science Laboratory

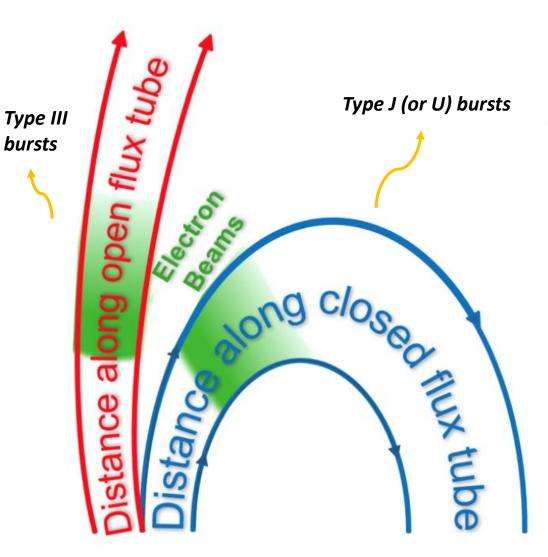
Deriving large coronal magnetic loop parameters using LOFAR J-burst observations

By: Jinge Zhang Supervised by: Dr Hamish A.S. Reid

NASA Astronomy Picture of the Day (APD), 8^{TH} Sep 2000

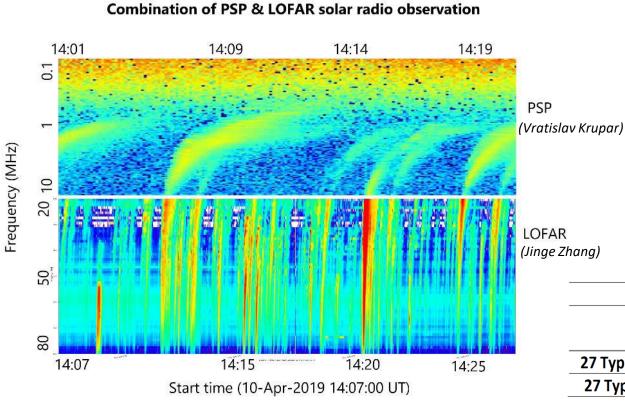
Photo of the Superterp, the heart of the LOFAR core (Haarlem et al 2013)

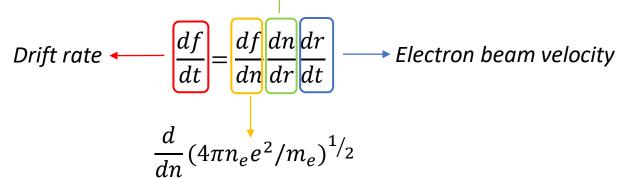
Jinge Zhang

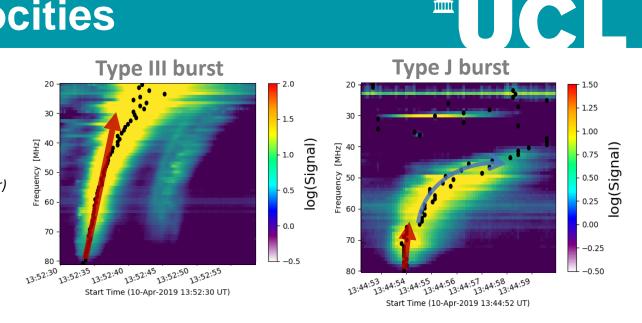

jinge.zhang.18@ucl.ac.uk

Second year PhD student in MSSL solar group

Analysing electron beam velocities




Reid and Kontar, 2017


- Exciter velocities of type III bursts from 0.15c to 0.3c (where c is the speed of light). (e.g. Poquerusse (1994) ; Klassen et al. (2003))
- Exciter velocities of type III bursts from 0.2 to 0.25c (e.g. Labrum & Stewart (1970); Reid & Kontar (2017))
- It is generally considered that type J and U's exciter velocities has the same order as type III bursts.
- No statistical analysis of type III and type J bursts exciter velocities during one solar radio noise storm.
- Question: Whether the electron acceleration properties are different in 'open' and closed flux tubes?

Analysing electron beam velocities

Background electron density gradient

Ê

	Fundamental emission		Second-harmonic emission	
	Average velocity	Standard	Average velocity	Standard
	[c]	deviation	[c]	deviation
27 Type III bursts	0.12	0.02	0.16	0.03
27 Type J bursts	0.13	0.03	0.17	0.04

Type J bursts and type III bursts have similar average exciter velocities.

This means both type III and J electron beams experienced very similar acceleration process during the same solar activity.

Deriving loop parameters

- Aschwanden et al. (1992) determined coronal loop physical parameters and electron beam properties from three type U bursts observed by the Very-Large-Array (VLA) between 1300 to 1700 MHz. Therefore, loop height is relatively low, at around 0.18 R_{\odot} .
- We determined large coronal loop's (with loop heights around 1.2 R_☉) physical parameters by analysing type J bursts observed by the Low-Frequency-ARray (LOFAR) between 20-80 MHz.

OBSERVED AND CALCULATED PARAMETERS FOR THREE TYPE U BURSTS ON 1989 AUGUST 13

Parameter	U Burst 1	U Burst 2	U Burst 3
	Observations		
Time of type U burst Minimum frequency Maximum frequency Half-loop transit time	1356:30 UT 1425 MHz 1700 MHz 4.4 s	1357:18 UT 1375 MHz 1700 MHz 3.2 s	1358:24 UT 1440 MHz 1700 MHz 3.1 s
Harmo	nic Plasma Emission	(s=2)	
Plasma frequency Electron density	713 MHz $6.3 \times 10^9 \text{ cm}^{-3}$	687 MHz $5.9 \times 10^9 \text{ cm}^{-3}$	740 MHz $6.8 \times 10^9 \text{ cm}^{-3}$
Sakurai Magnetic Field Extrapolation			

Altitude of loop apex	130 ± 15 Mm	Aschwanden l	Aschwanden loop height: $0.18~R_{\odot}$	
Half-loop length	$200 \pm 20 \text{ Mm}$	•••		
Magnetic field inner footpoint	1770 ± 30 G	•••		
Magnetic field outer footpoint	310 ± 20 G			
Magnetic field apex	11 ± 2 G			

Limits Implied from the Observed Frequency Range			
Maximum/minimum frequency ratio	>1.19	>1.24	>1.15
Loop height/scale height	>0.35	>0.42	>0.28
Density scale height	<360 ± 60 Mm	$<300 \pm 40 \text{ Mm}$	<460 ± 50 Mm
Temperature in loop	$<7.9 \pm 0.9$ MK	$< 6.6 \pm 0.8$ MK	$<10.0 \pm 1.1$ MK
Temperature in loop	$<7.9 \pm 0.9$ MK	$< 6.6 \pm 0.8$ MK	$<10.0 \pm 1$

Rosner-Tucker-Vaiana Law			
Temperature Pressure Density scale height Magnetic confinement	7.0 \pm 0.4 MK 6.1 \pm 0.4 dyn cm ⁻² 320 \pm 20 Mm >12 G	$\begin{array}{c} 6.7 \pm 0.4 \ \mathrm{MK} \\ 5.4 \pm 0.3 \ \mathrm{dyn} \ \mathrm{cm}^{-2} \\ 310 \pm 20 \ \mathrm{Mm} \\ > 12 \ \mathrm{G} \end{array}$	7.2 \pm 0.4 MK 6.8 \pm 0.4 dyn cm ⁻² 330 \pm 20 Mm > 13 G
	Electron Beam		
Exciter velocity Kinetic energy Beam velocity/thermal velocity Collisional deflection time	$42 \pm 3 \text{ Mm s}^{-1}$ 5 keV 4.4 0.4 ± 0.1 s	$64 \pm 5 \text{ Mm s}^{-1}$ 10 keV 6.2 1.4 \pm 0.3 s	$53 \pm 4 \text{ Mm s}^{-1}$ 7 keV 5.2 0.7 \pm 0.2 s

Aschwanden et al. (1992)

Deriving loop parameters

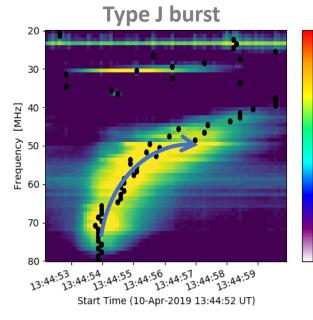
1.50

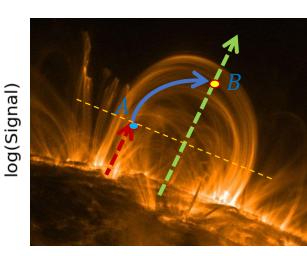
- 1.25

- 1.00

0.75

0.50


0.25


- 0.00

-0.25

-0.50

(NASA Astronomy Picture of the Day, 8TH Sep 2000)

We analysed 17 type J bursts in this burst storm and we derived exponential density models for each of them in form :

$$N_e(h) = N_0 \times e^{-h/H}$$

We use the density scale height for the coronal plasma in thermal equilibria, (Aschwanden et al 1992) given by:

$$H = \frac{(1+\alpha)}{\beta} \frac{k_b T_E}{m_p g_{sun}}$$

We use the Ideal gas law to estimate pressure:

$$\mathbf{P} = n_e k_b T_E$$

We use plasma beta to estimate minimum magnetic field strength in solar corona: $\beta = 3.47 \times 10^{-15} \frac{n_e T}{B^2} < 1$ Loop physical parameters we determined from 17 type J bursts are smaller in magnitude compared to Aschwanden et al. (1992) 's estimation for smaller loops:

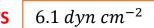
Average loop height: $1.2 R_{\odot}$ VS

$$0.18 R_{\odot}$$

VS

• We observe type J bursts in the lower frequency range, reflecting coronal loops in the higher solar corona.

Average density scale height: $2.4 \times 10^{10} cm$

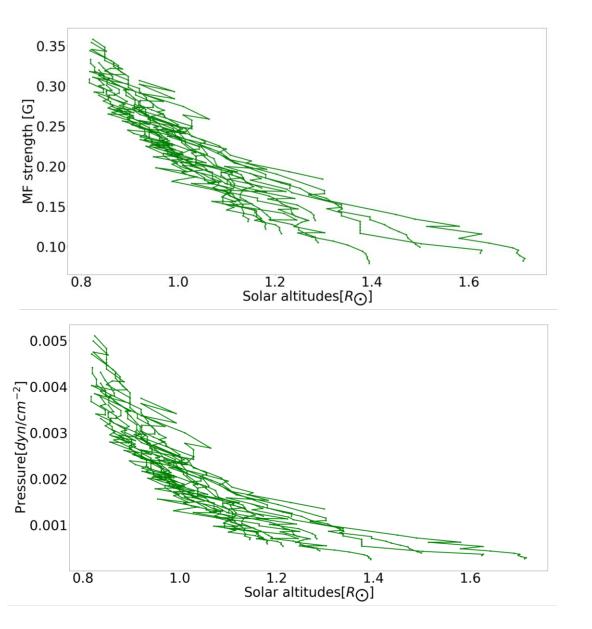

 $3.6 \times 10^{10} cm$

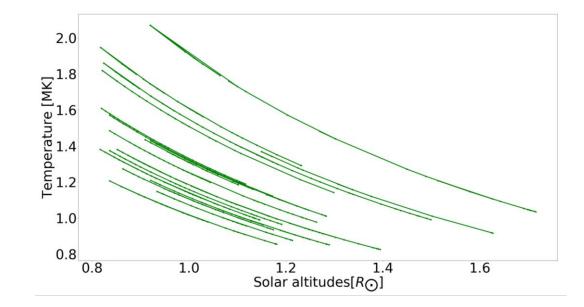
• We have higher loop height/scale height ratio. Therefore, we use ideal gas law to estimate loop pressure.

Average loop top temperature: 1.3 MK VS 7.0 MK

• Loop temperature is lower in higher corona.

Average loop top pressure: $0.002 \ dyn \ cm^{-2}$ VS


• Loop pressure is lower in higher corona.


Average loop top MF strength:> 0.22 G VS

- > 12 G
- Loop magnitude strength is lower in higher corona.

Deriving loop parameters

- Loop top temperature between 0.8 to 2.0 MK.
- Loop top pressure between 0.0005 to 0.005 $dyn \ cm^{-2}$.
- Minimum loop top magnetic field strength between 0.1 to 0.25 G.
- Loop temperature, pressure and magnetic field strength decrease while altitude increase.

Summary

- Electron beams travel along open or closed flux tubes have very similar acceleration properties during the same solar activity.
- We derived large coronal loops' (loop height around $1.2 R_{\odot}$) physical parameters from 17 type J bursts, we found:
 - Average loop top temperature:1.3 MK
 - ➢Average loop top pressure:0.002 dyn cm⁻²
 - ➢Average loop top minimum magnetic field strength:> 0.22 G
- Loop temperature, pressure and magnetic field strength decrease while altitude increase.

Department of Space and Climate Physics, Mullard Space Science Laboratory

Thank you for listening!

Jinge Zhang jinge.zhang.18@ucl.ac.uk

Hamish Reid hamish.reid@ucl.ac.uk