Coronal forbidden lines in the DKIST era

Giulio Del Zanna, Helen Mason (University of Cambridge, UK) Jenna Samra, Ed DeLuca, Chad Madsen (CfA, SAO, USA) Paul Bryans (HAO, USA)

Del Zanna et al. ESPM 2021

Pros and cons

Forbidden lines in the visible/IR are great to measure the (nearly unexplored) outer corona out to e.g. 2 R (due to strong photo-excitation), where important processes as interchange reconnection (Del Zanna+2011) is occurring.

- Ne via line ratios
- T (ionisation T, but also Te in combination with EUV)
- Chemical abundances
- Non-Thermal effects (line widths, non-thermal electrons)
- Magnetic field

However:

- Visible/IR nearly unexplored ! (Del Zanna & DeLuca 2018)
- Atomic data not simple to calculate. Latest calculations (Del Zanna+ 2012, several A&A papers), made available to CHIANTI v.8 (Del Zanna+2015) showed increases of ~2 in the intensities (cf. Del Zanna & Mason, 2018)
- Modelling the signal is not trivial as photo-excitation is competing with electron collisional excitation (Del Zanna+2018)
- Significant atmospheric absorption for DKIST

Air-Spec as a pathway to DKIST

First near-infrared spectrometer (after 1970: Olsen+1971) to observe during an eclipse from a high-altitude airplane, where lines not accessible to DKIST can be observed. Obtained data on 2017 Aug 21 and 2nd July 2019 (Chile). Built at CfA, SAO (Samra et al.)

Del Zanna et al. ESPM 2021

Atomic data for forbidden lines

- To model the Fe XIII forbidden lines, large atomic models (e.g. Del Zanna & Storey 2012) are needed as cascading populates the lower states.
 Fe XIII
- Fe XIII NIR lines can be used to measure Ne and infer the coronal magnetic field.
- Improvements in CE rates for forbidden lines are still needed for some ions, although we have improved many (UK-APAP funded by STFC, UK)

Mao, Badnell, Del Zanna 2020

Mao, Badnell, Del Zanna 2021

Results

Combined NIR (Air-Spec) and EUV (Hinode EIS) measurements confirm previous findings (Del Zanna & DeLuca 2018): nearly isothermal plasma and photospheric S/Si abundances (Asplund+2009) in the quiet corona. Ne from S XI (NIR), Fe XII (EUV) line ratios, and WL pB in broad agreement. Air-Spec I (Madsen+2019), Air-Spec II (Del Zanna+2021).

Near Future: further Air-Spec flights, DKIST, UCOMP, Aditya VELC, etc.