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AIDA builds on 3 current trends in science: 
1. Growth in data (from observations and simulations)

AIDA provides tools to access, organise and analyse a wide range of data sources

MMS

Solar Wind 15 Page 3 of 7   103 

Figure 1 Big data in solar wind science: a) growth of the accumulated data from solar observa-
tions (courtesy of National Solar Observatory), b) Moore’s law (data from https://www.karlrupp.net/
2018/02/42-years-of-microprocessor-trend-data: the number of transistors per integrated circuit chip con-
tinues to grow, leading to more simulation data produced per unit time. The frequency and single thread
performance has saturated but are compensated for by the growth of computing cores per chip. The typical
power remains a key limit that cannot grow further for economical and environmental reasons.

iv) Suprathermal and energetic particles in the solar wind:
Ling Hua Wang, David Lario, Nicole Meyer-Vernet, Viviane Pierrard, Ian Richard-

son.
v) Solar wind interaction with solar system objects and dust:

Philippe Escoubet, Masaki Fujimoto, Mihaly Horanyi, Benoit Lavraud.
vi) Interaction of the solar wind with the interstellar medium:

Vlad Izmodenov, Nick Pogorelov, Nathan Schwadron.

Moore’s Law

Courtesy of NSF
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• Recent EU projects: Flarecast, AIDA
• US projects: Solstice
• Growth in publications, conferences

AIDA builds on 3 current trends in science: 
2. Artificial Intelligence

AIDA built several new space science ML tools, open source available to all.
AIDA provides simplified access and training examples of ML tools.
AIDA makes powerful ML software accessible to the space community.
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AIDA builds on 3 current trends in science: 
3. affirmation of python

AIDA collaborates with many other space-related python tool developments and contributes 
its own data management, statistical and ML tools.

Burrell, Snakes on a Spaceship, JGR, 2018
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The main tools produced by AIDA

AIDApy
• Python based tools for

• Data analysis
• Machine learning 
• Deep Learning 
• Virtual spacecrafts 
• Real spacecraft data
• Data assimilation 
• Validation and Verification 

• Interoperability with ongoing efforts

• Interoperability between virtual (simulation) 
and real (space mission) observations

AIDAdb
• Database that includes: 

• Simulations
• Trained neural networks
• Lists of events
• Training sets
• Examples and tutorial exercises (e.g. School 1 taped 

and School 2 TBD)

• Based on EUDAT and iRODS
• Link with public databases via AIDApy
• Metadata specifications compatible with other 

efforts in the world (e.g. NASA planetary data 
server) 
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AIDA services for space 
weather 

• Supervised Classification of Plasma Regions in Near-
Earth Space: applied to MMS data using CNN

• Unsupervised Classification of incoming solar wind
using Dimensionality reduction and Self Organizing 
maps (SOM)

• Unsupervised Classification of Plasma Regions in Near-
Earth Space: applied to OpenGGCM simulations using 
SOM

• Prediction of DST index and time-warping methods to 
establish the accuracy of predicting storm times.

• Data Assimilation methods based on Kalman filters: 
application of representer technique to OpenGGCM
and EUHFORIA

• Solar image segmentation with NN: identification of 
coronal holes for space weather prediction

Class Region

0 Pristine solar wind

1 Magnetosheath (DS BS)

2 Boundary layer

3 Plasmasphere

4 Magnetosheath (DS BS)

5 Magnetosheath

6 Lobes

Millas et al.
Front. Astron. Space Sci., 08 October 2020

https://doi.org/10.3389/fspas.2020.571286

SOM classification of OpnGGM data

DST Iundex Prediction and Time Warping
Laperre et al., Front. Astron. Space Sci., 22 July 2020

https://doi.org/10.3389/fspas.2020.00039

https://doi.org/10.3389/fspas.2020.571286
https://doi.org/10.3389/fspas.2020.571286
https://doi.org/10.3389/fspas.2020.00039
https://doi.org/10.3389/fspas.2020.00039
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AIDA services for 
space missions
• Data retireval tools: avoiding any replication with 

other python tools, e.g. pySPEDAS, Heliopy.

• Link with ongoing missions: SDO,MMS and PSP.

• Link with upcoming data: strong initiative to provide 
AidaPy services to SolO

• Virtual Mission Tool: to create synthetic data from 
simulation as if it were created by a missiong under 
design

• Linking simulation and observation: so that the same 
analysis can be applied to both

• ML tools to identify extreme events: e.g. shock, 
reconnection.

• ML-driven creation of lists of events

• Explainable ML  tool for classification of in situ data: 
exmple of MMS in previous slide.

F. Valentini: Curlometer technique applied to the time series of magnetic field from a tetrahedron of 
virtual spacecraft launched across the numerical box of a turbulence simulation.

H. Breuillard et al.
Front. Astron. Space Sci., 

03 September 2020
https://doi.org/10.3389/fspas.2020.00055

Supervised classification
of MMS data

https://doi.org/10.3389/fspas.2020.00055
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AIDA services for scientific discovery via 
data analysis

• Reliance on unsupervised ML tools that can discover 
unexpected features

• AidaPy statistical tools package: to standsrdise 
operations typically done in C, IDL

• Statistical Analysis of VDF: indicators of complexity, non 
maxwellianity, beams

• ML analysis of VDF: K-means, gaussian mixture method 
(GMM), SOMs, superposition of kappas.

• Identification of Reconnection: using simulation and 
observation together and using supervised ML trained 
on human-labelled events and using unsupervised 
methods.

• Analysis of Turbulenct structure: using unsupervised ML 
(DBSCAN)

F. Sahraoui: Top: Ions bulk moments, revealing the encounter of a shock. Middle: non-Maxwellianity parameter. 
Bottom: 2D slices of the VDF in the Maxwellian (left) and non-Maxwellian (right) region.



Using ML based on 
particle distributions  

varying weights are investigated in this paper. Therefore, the
algorithm takes into account the weight of each electron.

Figure 2 compares the number of components identified by the
detection algorithm in the left column with the measure of
gyrotropy in the right column for various time steps. The objective
is to highlight the behavior of the two quantities when the
reconnection grows. Considering first the number of components,
different structures are observed. Indeed, it can be clearly stated
that it is not only the EDR, identified by the peak of Q, that is
detected but also a much wider panel of different regions, which
are symmetric with respect to the central plane y=10. The GMM
algorithm seems to locate inflows, ion diffusion region and EDRs,
outflow, and separatrix boundaries. Another striking result of
Figure 2 is the capability of the algorithm to detect regions where
the influence of the reconnection seems to be weak, such as far
upstream of the X line and near the O point. The noise of the PIC
simulations is filtered out and unique distributions are successfully
recognized for distributions with a single component. Starting with

the first time step t=8000, a large background tagged with two
components extends from y≈7 to y≈13 and surrounds the EDR
located at x≈7. This region may correspond to the ion diffusion
region. The EDR is mainly composed of mixtures with five and
four components, highlighting complex velocity distributions. The
GMM analysis in this region is expected to be related to the results
provided by Swisdak’s measure of the gyrotropy. Both methods
focus on the non-Maxwellianity and complexity of the distribu-
tions, through the moments for the measure of gyrotropy and
directly by estimating the underlying probability density function
for the GMM method. Downstream from the EDR in the outflow,
a C-shape structure is noticeable on each side, characterized by
distributions with four and five components connecting the EDR
with the separatrix region. The latter is mainly composed of
distributions with two and three components.
With regard to the three other time steps t=12,000,

t=16,000, and t=20,000, they show very similar structures
and behaviors. The size of the EDR tends to slightly increase in

Figure 2. Magnetic reconnection detection for the double Harris sheet case with a guide field value of 0.1 at four different time steps, from top to bottom: t=8000,
t=12,000, t=16,000, and t=20,000. The left column presents the number of components provided by the BIC optimization, and the right column shows the measure of
gyrotropy Q defined inEquation (1). The red rectangles indicates the location where specific distributions are observed. They merge four GMM cells in the x-direction and
two GMM cells in the y-direction.
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Figure 4. Electron velocity distribution for the double Harris sheet case at t=20,000. Each row corresponds to one of the five red rectangles depicted in Figure 2.
Three 2D marginal distributions are presented: vP−v⊥1, vP−v⊥2, and v⊥1−v⊥2. The white ellipses illustrate the different Gaussians of the mixtures in each distribution.
The transparency is determined by the weight of each Gaussian: no transparency for a weight of 1 and a full transparency for a zero weight. The red ellipses give the
mean and variance for a single distribution.
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varying weights are investigated in this paper. Therefore, the
algorithm takes into account the weight of each electron.

Figure 2 compares the number of components identified by the
detection algorithm in the left column with the measure of
gyrotropy in the right column for various time steps. The objective
is to highlight the behavior of the two quantities when the
reconnection grows. Considering first the number of components,
different structures are observed. Indeed, it can be clearly stated
that it is not only the EDR, identified by the peak of Q, that is
detected but also a much wider panel of different regions, which
are symmetric with respect to the central plane y=10. The GMM
algorithm seems to locate inflows, ion diffusion region and EDRs,
outflow, and separatrix boundaries. Another striking result of
Figure 2 is the capability of the algorithm to detect regions where
the influence of the reconnection seems to be weak, such as far
upstream of the X line and near the O point. The noise of the PIC
simulations is filtered out and unique distributions are successfully
recognized for distributions with a single component. Starting with

the first time step t=8000, a large background tagged with two
components extends from y≈7 to y≈13 and surrounds the EDR
located at x≈7. This region may correspond to the ion diffusion
region. The EDR is mainly composed of mixtures with five and
four components, highlighting complex velocity distributions. The
GMM analysis in this region is expected to be related to the results
provided by Swisdak’s measure of the gyrotropy. Both methods
focus on the non-Maxwellianity and complexity of the distribu-
tions, through the moments for the measure of gyrotropy and
directly by estimating the underlying probability density function
for the GMM method. Downstream from the EDR in the outflow,
a C-shape structure is noticeable on each side, characterized by
distributions with four and five components connecting the EDR
with the separatrix region. The latter is mainly composed of
distributions with two and three components.
With regard to the three other time steps t=12,000,

t=16,000, and t=20,000, they show very similar structures
and behaviors. The size of the EDR tends to slightly increase in

Figure 2. Magnetic reconnection detection for the double Harris sheet case with a guide field value of 0.1 at four different time steps, from top to bottom: t=8000,
t=12,000, t=16,000, and t=20,000. The left column presents the number of components provided by the BIC optimization, and the right column shows the measure of
gyrotropy Q defined inEquation (1). The red rectangles indicates the location where specific distributions are observed. They merge four GMM cells in the x-direction and
two GMM cells in the y-direction.
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Types of distrubutions(GMM)

Agyrotropy

Dupuis, R., et al(2020). ApJ, 889(1), 22.
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• Fluid thermal energy:

• Multibeam thermal energy

• Drop in thermal energy

• Pseudo (False) thermal energy

Effect on the definition of thermal energy

the x-direction over the time while the extent of the ion
diffusion region remains steady. The outflow region is still
clearly identified, and its location remains quite steady. The
reconnection gives rise to a clear magnetic island on the right
side of the figure at these time steps. The thickness of the
region around the O point tends to increase dramatically in the
y-direction when the reconnection grows. Several different
distribution types can be observed, leading to a rather noisy
mix with a background with two components and some with
three and four components. Moreover, secondary structures
gradually appear near the O point, creating a link between the
bottom and the top layers of the island. Finally, two concentric
ellipses can be observed at t = 20,000. They are composed of
three components for the outer ellipse and two components for
the inner ellipse. It is important to note that no spatial
constraints or correlations are imposed on the detection
algorithm, thus all the structures identified by the BIC
minimization may exist in the distributions.

All of the results provided by the detection algorithm are then
compared to the values of Q depicted in the right column in
Figure 2 for the same time steps. A few similarities are observed:
the measure of gyrotropy clearly highlights the EDR for all time
steps with peak values observed above 0.5, and topological
boundaries of the reconnection are also mapped, almost coinciding
with the boundaries of the GMM algorithm with slight differences.
However, different behaviors compared to the detection algorithm
are exhibited. For instance, the region surrounding the EDR is not
diagnosed by the measure of gyrotropy as well as the outflow and
inner structures around the O point. Small artifacts seem to be
present within the topological boundaries, but the background
noise prevents them from being clearly identified. Indeed, the
measure of gyrotropy is not exactly zero for regions far away from
the reconnection with a background noise around 0.1, while the
detection algorithm clearly identifies single distributions.
Figure 3 displays Edrop and Edev in order to support the

analysis of the number of components, helping to make

Figure 3. The left column highlights the energy drop Edrop defined byEquation (17), and the right column depicts the energy deviation Edev given byEquation (19).
Both quantities are presented at four different time steps, from top to bottom: t=8000, t=12,000, t=16,000, and t=20,000.
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(BIC; Anderson 2002):

( )
( ) ( ) ( )

� �
� �

k L
n k L

AIC 2 2 ln
BIC ln 2 ln , 13

where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of

thermal energy based on the moment of the whole distribution is
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.

5

The Astrophysical Journal, 889:22 (15pp), 2020 January 20 Dupuis et al.

(BIC; Anderson 2002):
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where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.
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(BIC; Anderson 2002):
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where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of

thermal energy based on the moment of the whole distribution is
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
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to noisy distributions and a BIC parameter with a weak
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components. From the authors’ experience, typical numbers of
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may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.
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components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
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tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.
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As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:

( )
( )

�E
E

E
. 19

K

dev
dev

thermal

This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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Extension to MMS observations and turbulence simulations

MMS Reconnection event: 
16 October 2015-13:07:02.235 Regions of interest from turbulent simulations
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