Activities of the topical team on **Coronal Shocks and Particle Acceleration** for Solar Orbiter coronagraph METIS

- Gaetano Zimbardo,
- University of Calabria, Italy and INAF, Italy
 - On behalf of METIS topical team TT9
- 16th European Solar Physics Meeting, 6-10 September 2021

- Banerjee Dipankar, Aryabhatta Research Institute of Observational Sciences, India De Leo Yara, Univ. Catania, Italy
- Feng Li, Ying Beili, Purple Mountain Observatory, China Franci Luca, Queen Mary Univ., London, UK Habbal Shadia, Institute for Astronomy, Univ. Hawaii, USA Laming John, Ko Yuan-Kuen, Strachan Leonard, NRL, Washington DC, USA Long David, MSSL, UCL UK
- Magdalenic Jasmina, ROB, Bruxelles, Belgium Naletto Giampiero, Univ. Padova, Italy
- Nisticò Giuseppe, Perri Silvia, Zimbardo Gaetano, Univ. Calabria, Italy Stangalini Marco, Agenzia Spaziale Italiana, Italy Vainio Rami, Univ. of Turku, Finland Velli Marco, UCLA, USA

Team Members:

Bemporad Alessandro, Frassati Federica, Mancuso Salvatore, Susino Roberto, INAF/OATo, Italy

Rodriguez-Garcia Laura, Rodriguez-Pacheco Javier, Gomez-Herrero Raul, Univ. of Alcalà, Spain

Past meetings (online only):

- Here, we give an overview of the scientific presentations delivered so far, with the cover slide and a single slide for each talk.

- Kick-off meeting: 24 June 2020; speakers: Stangalini, Romoli, Spadaro • Second meeting: 30 September 2020; speakers: Zimbardo, Bemporad, Feng • Third meeting: 24 November 2020; speakers: Rodriguez-Garcia, Magdalenic • Fourth meeting: 9 March 2021; speakers: Vainio, Banerjee, Long, Ying

Determination of plasma physical properties across CME-driven shocks with remote sensing data

A. Bemporad INAF-Turin Astrophysical Observatory, Italy

"Determination of plasma physical properties across CME-driven shocks with Remoe Sensing data" – A. Bemporad

Metis TT9, 30/09/2020 (via Zoom)

Physics of Shock from VL: upstream magnetic fields

- **Pre-shock densities** derived with latest pre-CME LASCO pB image.
- **Compression ratios** *X* derived all along the shock front by:
- \rightarrow X maximizes at shock nose, X decreasing with shock altitude.
- Mach numbers M_A derived all along the shock front by:
- 1. measuring from VL images the inclination θ of shock surface with respect to the radial,
- 2. applying the empirical formula (tested in Bemporad, Susino & Lapenta 2014; Bacchini et al. 2015) for M_A in oblique shock ($\beta << 1$, $\gamma = 5/3$)

 $M_{A \angle} = \sqrt{(M_{A \perp} \sin \theta)^2 + (M_{A \parallel} \cos \theta)^2}$

- $\rightarrow M_A$ maximizes at shock nose, M_A decreasing with shock altitude.
- Magnetic fields derived along the coronal region crossed by shock:
- 1. combining M_A values with measured shock speeds
- 2. assuming possible distributions of pre-shock solar wind speeds

$$B_u = v_A \sqrt{\mu_0 m_p n_e}$$

 \rightarrow output radial field profiles s in good agreement with previous estimates.

"Determination of plasma physical properties across CME-driven shocks with Remoe Sensing data" – A. Bemporad

3D reconstructions of a coronal shock with the mask-fitting method

Li Feng, Lei Lu, Beili Ying (ASO-S team) Purple Mountain Observatory, CAS, China B. Inhester, J. Plowman, M. Mierla, M. West, F. Shen, Y. Wei, J. Guo

Applications: 3D kinematics

The Unusual Widespread Solar Energetic Particle Event on 2013 August 19

Solar origin and particles longitudinal distribution

Laura Rodríguez-García ESA NPI PhD student at Universidad de Alcalá (Madrid, Spain) Solar Orbiter EPD Instrument team member Rodríguez-García et al. (A&A 2020, accepted) https://doi.org/10.1051/0004-6361/202039960

L. Rodríguez-García¹, R. Gómez-Herrero¹, Y. Zouganelis², L. Balmaceda^{3,4}, T. Nieves-Chinchilla³, N. Dresing⁵, M. Dumbović⁶, N. V. Nitta⁷, F. Carcaboso¹, L. F. G. dos Santos^{3,8}, L. K. Jian³, L. Mays³, D. Williams², and J. Rodríguez-Pacheco¹

The SEP Event: 2013 August 19: Disentangling the time profiles CSA

What can we learn from solar radio observations with LOFAR?

Jasmina Magdalenić Royal Observatory of Belgium

The type II burst observed by LOFAR

• LOFAR dynamic spectrum (observed with high time/frequency resolution of 10 ms &12.3 kHz) shows, for the first time, such a strong fragmentation of the shock associated radio emission.

Magdalenić et al., ApJL, 2020

Particle acceleration in coronal shocks: some recent findings from simulations and data-analysis

Rami Vainio

Department of Physics and Astronomy, University of Turku (UTU)

Main collaborators: Alexandr Afanasiev (UTU), Athanasios Kouloumvakos (IRAP) & Alexis Rouillard (IRAP)

Simulated spectra at the shock

A kappa-distribution with $\kappa = 2$ and an exponential cutoff at 1 MeV is used as the upstream distribution function.

A function to fit particle spectra:

$$I_{\rm p}(E) = C E^{-\beta} {\rm e}^{-\left(\frac{E}{E_{\rm c}}\right)^{\delta}}$$

 $C, \beta, E_{c} \text{ and } \delta \text{ are fitting}$ parameters

Synergy between METIS and VELC

Dipankar Banerjee

3D Reconstruction of CMEs with VELC & METIS

300 million km Maximum distance between Earth and Solar Orbiter

16.5 min

Maximum time for a radio signal to travel one way between Earth and Solar Orbiter

> 22 orbits around the Sun

Nov 2021 Start of main mission

Dec 2026 Expected start of extended mission

Localised acceleration of energetic particles by a weak shock in the solar corona

David M. Long, Hamish A. S. Reid, Gherardo Valori, Jennifer o'Kane

Mullard Space Science Laboratory, University College London

UK Research and Innovation

Arcsec

Event evolution

- Possible to identify two distinct radio sources at leading edge of global wave
 - Also radio emission from source active region
- Correspond to Type III radio emission
 - Source 1 at higher frequencies
 - Source 2 at high -> low frequencies

3D reconstruction of a CME-driven bow shock & Η I Lyα intensity calculation

Beili Ying

Li Feng et al.

Purple Mountain Observatory, Nanjing, China

Metis TT9, 09/03/2021

Calculation of H I Lya intensity based on the 2-fluid MHD simulation

