CHARACTERIZING SPECTRAL CHANNELS OF VISIBLE EMISSION LINE CORONAGRAPH OF ADITYA-L1

Presented by – Arpit Kumar Shrivastav^{1,2,3}

Contributors : Ritesh Patel^{1,2}, A. Megha¹, Vaibhav Pant², M. Vishnu¹,

K. Sankarasubramanian^{1,4,5} and Dipankar Banerjee^{1,2,4}

¹Indian Institute of Astrophysics, Bangalore, India, ²Aryabhatta Research Institute of Observational Sciences, Nainital, India, ³Department of Physics, Indian Institute of Science, Bangalore, India, ⁴Center of Excellence in Space Science, IISER Kolkata, Kolkata, India, ⁵UR Rao Satellite Centre, Bangalore, India

DOI: 10.3389/fspas.2021.660992

Motivation & Quick Introduction

Beforehand :

- Optimizing the slit width
- Understanding the performance of the instrument in different temperature ranges
- SNR requirement in Different Coronal conditions

Plan the observations

Total Solar Eclipse 2010, Copr. Miloslov Druckmuller et.al. 2010

Wavelength Channel (Å)	Characteristic Temperature (logT)	Pixel size (µm)	Pixel Scale (arcsec/ pixel)
5303	6.30	6.5	1.25
7892	6.10	6.5	1.25
10747	6.22	25	4.8

(Allen, 1973)

Strategy

Synthetic spectra for VELC at 1.1 Ro for (A) 5303 Å, (B) 7892 Å, and (C) 10747 Å for 50 μm slit width at their respective line formation (Patel et. al. 2021)

08-09-2021

Slit Width Optimization

At [1.1, 1.2, 1.3, 1.4, 1.5] R_{sun}

log(EM) = [27, 26.3, 25.8, 25.36, and 25] cm⁻⁵
log(ne) = [8.2, 7.85, 7.6, 7.38, and 7.2] cm⁻³

(Baumbach, 1937; Allen, 1973)

Variation of Synthetic Intensity (Peak+Scatter) & SNR with Slit width for all three channels

- Visible Spectral Channel, full well capacity of~30,000 electrons
- IR detector, full well capacity of ~30,300 electrons in the high-gain mode (Singh et al., 2019).
- Spectropolarimeter mode, a fixed exposure time of 500 ms.
- A slit width of 60 μ m, the incident photons count to ~23,033 electrons at 1.1 R_{sun},~77% of the full well capacity.

SNR vs Temperature

Variation of SNR(Peak) with temperature for all three spectral channels

- The three channels show maximum SNR corresponding to different temperatures.
- The 7,892 Å channel shows good SNR for relatively cool plasma.
- Combined study will be helpful in investigating plasma over a wide range of temperatures.
- In 5303 and 7892 Å, The SNR becomes \leq 5 for few cases.

Effect of Temperature distribution

Photoelectron variation using synthetic spectra for VELC at different heights for (A) 5303 Å, (B) 7892 Å, and (C) 10747 Å for 50 μm slit width with temperature distribution.

SNR Limitation on Doppler Velocity

- Quiet-Sun case for 5303Å, A shift of ≈ 88mÅ
- Gaussian fit after adding random noise (to mimic the near-realistic observation)
- For the SNR at the peak of the spectra is ≈ 5, a reliable Doppler speed is measured in the synthetic data, close to the imposed one.
- For the SNR at the line peak is close to 1, a significant deviation could be seen in the measured Doppler speed.

(B) Synthetic green line with noise and Doppler shift added line at 20% intensity of (A).

(D) show SNR variation within the spectral line

7

Summary & Conclusions

- For slit width of 50 μ m, IR Channel detector has a sufficient margin to account for the flaring conditions or intensity enhancement in the coronal structures.
- The slit width needs to be \leq 60 μ m.
- Combined study using all three channels will be helpful in investigating plasma over a wide range of temperatures.
- The maximum contribution will be observed due to the coronal structures contributing at and near the peak temperature for VELC channels.
- An SNR of at least 5 is good enough to measure a Doppler speed as low as 5 km s⁻¹ using the green channel of VELC.
- Study can be extended for different science case.

References :

- Characterizing Spectral Channels of Visible Emission Line Coronagraph of Aditya-L1, Ritesh Patel, A. Megha, Arpit Kumar Shrivastav, Vaibhav Pant, M. Vishnu, K. Sankarasubramanian and Dipankar Banerjee, DOI : 10.3389/fspas.2021.660992
- Allen, C. W. (1973). Astrophysical Quantities.
- Singh, J., Raghavendra Prasad, B., Suresh Venkata, S., and Amit Kumar, A. (2019). Exploring the Outer Emission corona Spectroscopically by Using Visible Emission Line Coronagraph (VELC) on Board ADITYA-L1 mission. Adv. Space Res. 64, 1455–1464. doi:10.1016/j.asr.2019.07.007
- Baumbach, S. (1937). Strahlung, ergiebigkeit und elektronendichte der sonnenkorona. Astr. Nachr. 263, 121–134. doi:10.1002/asna.19372630602

08-09-2021

