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TURBULENCE

(*) Molecular clouds :: 
ionization degree 10-7, weak collisional coupling 

(*) Solar photospheric turbulent convection :: 
ionization degree 10-4, strong collisional coupling

(*) Solar chromosphere ::
ionization degree 10-2, intermediate collisional coupling

(*) Turbulence associated to solar prominences ::
conditions similar to the chromosphere

Turbulence in weakly ionized plasmas is common in astrophysical environments
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TWO-FLUID APPROACH

Momentum evolution x 2= 
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Energy evolution x 2 = 
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+ not easy to determine numerical diffusivity of the code

Mancha-2F :: Popescu Bralieanu et al 2019



OBJECTIVES ::

(*) Evaluate an equivalent of the Ohmic-like 
numerical diffusion coefficient for multi-fluid 
simulations 

(*) Estimate the order of dissipation of the 
numerical scheme.

OBJECTIVES  & METHODS

o Numerical box 2048 x 8192 grid; dx=dz=1 km
o Smooth prominence – corona interface
o Magnetic field out of plane and sheared
o 3 sets of numerical diffusion parameters for Mancha-2F code

Popescu Bralieanu et al 2021a, b



OBJECTIVES ::

(*) Evaluate an equivalent of the Ohmic-like 
numerical diffusion coefficient for multi-fluid 
simulations 

(*) Estimate the order of dissipation of the 
numerical scheme.

OBJECTIVES  & METHODS

EVOLUTION of NEUTRAL & PLASMA DENSITIES



o Neutral drops are brought together by plasma dynamics
o Current sheet formation in between
o Reconnection and formation of magnetic islands filled with coronal material

DYNAMICS

NEUTRAL DENSITYPLASMA DENSITY



DYNAMICS of the CURRENT SHEET :: 3 NUMERICAL SETS

Snapshots of plasma density for three parameters of code’s simulation filtering frequency

Filter every 1 time step Filter every 5 time steps Filter every 20 time steps

o Slight, but important differences after running with different filtering for a short time



DYNAMICS of the CURRENT SHEET :: 3 NUMERICAL SETS

Out of plane current density
Velocity & velocity decoupling 

perpendicular to the current sheet
Velocity & velocity decoupling 
parallel to the current sheet

Filter every 1 time step

Filter every 5 time steps

Filter every 20 time steps

o Slight, but important differences after running with different 
filtering for a short time

o Differences in the strength of Jy and in the outflow decoupling



EVALUATION of EFFECTIVE DIFFUSIVITY

ηscheme=
0.9
0.3
0.08

x 106 m2/s

Filter every 1 time step Filter every 5 time steps Filter every 20 time steps

Assume diffusivity is Ohmic-like & constant in space
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EVALUATION of EFFECTIVE DIFFUSIVITY

ηhyper=
7.8
2.2
0.63

x 1012 m4/s

Filter every 1 time step Filter every 5 time steps Filter every 20 time steps

Assume hyper-diffusivuty constant in space
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SUMMARY

• Simulations of magnetized turbulence are frequently affected by numerical properties of the code

• Two-fluid simulations require scales of plasma-neutral interactions to be resolved

• We propose how to evaluate the numerical diffusion in the explicit two fluid code Mancha-2F

• Our method is clearly sensitive to the numerical parameters of the simulation (filtering frequency)

• The method allows to estimate the order of dissipation of the numerical scheme
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