Multi-line Stokes I inversions to infer magnetic fields in the spectral range around Cr I 578.2 nm

Christoph Kuckein^{1,2,3}

H. Balthasar¹, C. Quintero Noda^{2,3}, A. Diercke^{1,4}, J. C. Trelles Arjona^{2,3}, B. Ruiz Cobo^{2,3}, T. Felipe^{2,3}, C. Denker¹, M. Verma¹, I. Kontogiannis¹, and M. Sobotka⁵

¹AIP, ²IAC, ³ULL, ⁴Uni. Potsdam, ⁵ASU

Motivation

- Often we have excellent instruments but without polarimetric capabilities (e.g., VTT Echelle spectrograph on Tenerife)
- However, magnetic-field information is an important ingredient to better understand the different phenomena on the Sun

VTT, Tenerife

- But there are also advantages of not having polarimetry:
 - Faster slit-scans → very good cadences to follow structures on the Sun
 - Less complex instruments, data reduction processes, etc.

Motivation

Goal of this work:

to infer information about the magnetic field in the absence of polarimetry using many intensity profiles (only Stokes I)

Wavelength range in the Cr I 5782 Å window

Methodology

The magnetic field B causes a splitting in most spectral lines (Zeeman-effect). The width of this splitting depends on the strength of the magnetic field.

SIR synthesis

Methodology

SIR (Stokes inversion based on Response Functions)

Ruiz Cobo & del Toro Iniesta 1992

Element	Wavelength (Å)	J_1	J_{u}	$\log(gf)$	χ_e (eV)	$g_{ m eff}$	α	$\sigma(a_0^2)$
Mnı	5780.1612	5.5	4.5	-1.076 ± 0.235	4.25	1.046	0.249	251
Fei	5780.2828	4.0	4.0	-2.482 ± 0.118	4.22	1.325	0.271	811
Siı	5780.3838	0.0	1.0	-2.722 ± 0.032	4.20	0.500	0.219	1708
*Fe i	5780.5994	3.0	3.0	-2.324 ± 0.034	3.24	1.625	0.244	737
Fei	5780.8036	2.0	2.0	-2.663 ± 0.038	3.26	1.750	0.244	745
Fei	5780.8313	4.0	5.0	-2.885 ± 0.413	4.43	2.010	0.269	767
Cri	5780.9052	3.0	2.0	-1.793 ± 0.357	3.32	1.833	0.288	1098
Cri	5781.1791	2.0	1.0	-0.619 ± 0.029	3.32	2.000	0.288	1099
*Cr1	5781.7512	1.0	0.0	-0.548 ± 0.025	3.32	2.500	0.288	1100
Cui	5782.0970	1.5	0.5	-1.755 ± 0.088	1.64	0.667	0.287	273
Fei	5782.1093	3.0	3.0	-0.462 ± 0.065	5.06	1.250	0.332	2338
Cui	5782.1670	1.5	0.5	-1.839 ± 0.042	1.64	0.667	0.287	273
*Cr1	5783.0642	1.0	1.0	-0.184 ± 0.025	3.32	2.000	0.288	1099
*Cr1	5783.8498	2.0	2.0	$+0.074 \pm 0.035$	3.32	1.667	0.288	1098
*Fe1	5784.6580	3.0	4.0	-2.369 ± 0.031	3.40	1.875	0.244	795

15 lines comprised of Cr I, Fe I, Mn I, Cu I and Si I

Test laboratory

Compute synthetic spectra from simulation cube (snapshot 385) of the Enhanced
 Network simulation (Carlsson et al. 2016) from Bifrost (Gudiksen et al. 2011)

 Contaminate synthetic spectra: 1) add 15% straylight, 2) instrumental line broadening (Gaussian with FWHM ~1.1 km/s), and 3) random noise

Select two areas with strong magnetic fields (similar to sunspots)

Sim. vs. Inv.: strong horizontal fields

C. Kuckein: Multi-line intensity inversions in the 578.2 nm spectral range

Sim. vs. Inv.: strong horizontal fields

Sim. vs. Inv.: strong vertical fields

Simulations vs Inversions (at $log \tau = -1$)

Strong horizontal-field area

Strong vertical-field area

Observations

Telescope: VTT

Date: 2018 September 30

Target: sequential scans of AR 12723 (only best scan used → 10:06 UT)

C. Kuckein: Multi-line intensity inversions in the 578.2 nm spectral range

Conclusions

- The Cr I 578.2 nm spectral window is suitable to infer fields in the photosphere
- The SIR code performs well also with 15 simultaneous intensity profiles
- We can infer the magnetic field with only intensity profiles in highly magnetized areas from VTT observations
- The magnetic field inclination also shows coherent results
- This work has been accepted by A&A and is already available on arXiv:

Kuckein et al. 2021 → https://arxiv.org/abs/2107.11116

Thank you for your attention

