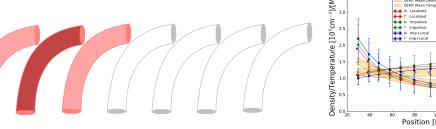

Hydrodynamic modeling of coronal loops reconstructed tomographically

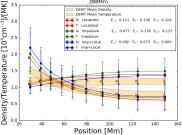
C. Mac Cormack (cmaccormack@iafe.uba.ar)

M. López Fuentes, C.H. Mandrini, D.G. Lloveras, A.M. Vásquez

Coronal loops observation

Differential emission measure tomography, combined with a global potential model of coronal magnetic field (DEMT-PFSS), allows us to characterize physical parameters of the coronal plasma along reconstructed loops.




Quiet sun typical loop legs

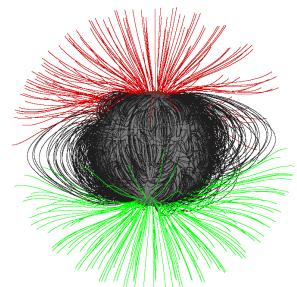
We statistically analyze the thermodynamic properties of coronal loops by finding "typical" loops for different length ranges.

Hydrodynamic modeling

We compare typical loops with a HD model for constant and impulsive heating regimes.

B

Coronal loops observations

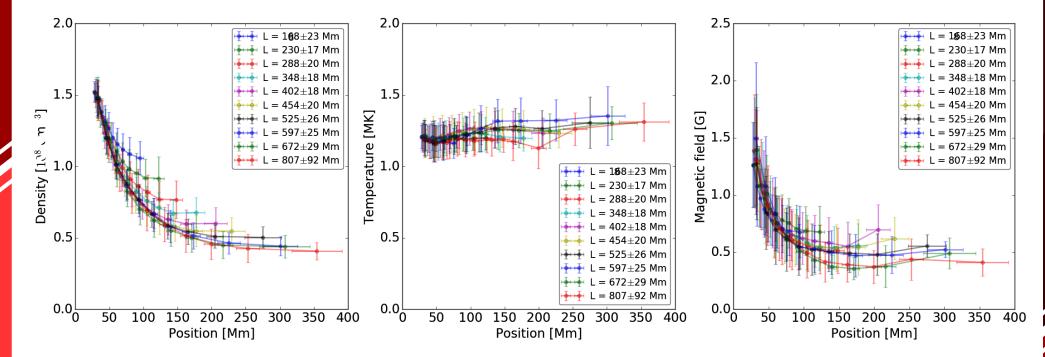

 \sim [17 , 156] Mm

DEMT:

- Spherical grid from ~17Mm to ~156Mm.
- Local Differential Emission Measure (LDEM) in each voxel.
- Tm, Ne and WT are obtained by computing the LDEM moments.
- *DATA*: We reconstructed Carrington rotation CR2082 with EUV images obtained with the EUVI telescope (STEREO mission).

DEMT+PFSS:

- Potential field source surface (PFSS).
- DATA: Synoptic magnetogram obtained with HMI (SDO mission) are used as a boundary condition.
- We obtain plasma properties along each magnetic field line by combining the DEMT results and the PFSS model.

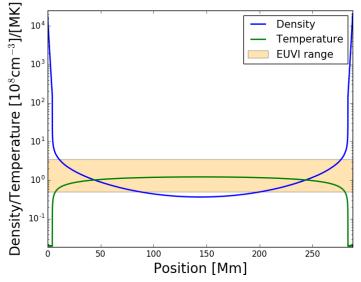

Frazin et al. 2009

- We only studied closed loops within tomographic limits (~16000 loops).

Quiet sun typical loop legs

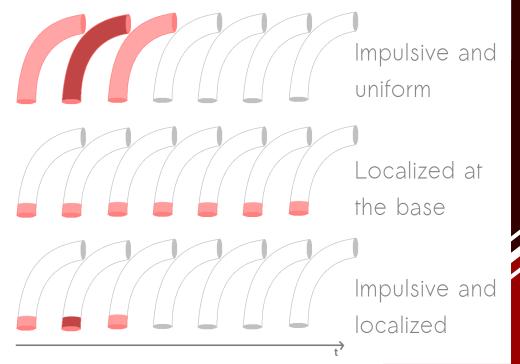
- 10 length bins, each containing with ~1600 loops

- We construct "typical" loop leg profiles for each length bin by computing the mean density, temperature and magnetic field at 10 mean positions along the leg.



We found a similar behavior for all the typical loops in density (N), temperature (T) and magnetic field (B). There is a substantial variation in the N and B profiles and very little in T profiles. Loops can be considered approximately isothermal.

Hydrodynamic modeling


HYDRAD solves the hydrodynamic equations assuming symmetrical and semicircular loops with variable gravitational acceleration along them. Boundary conditions and input parameters:

- Loop length: set with the length of typical loop legs
- Density and temperature at the interface between the chromosphere and the transition region: set as 10¹⁰ cm⁻³ and 20000K respectively.

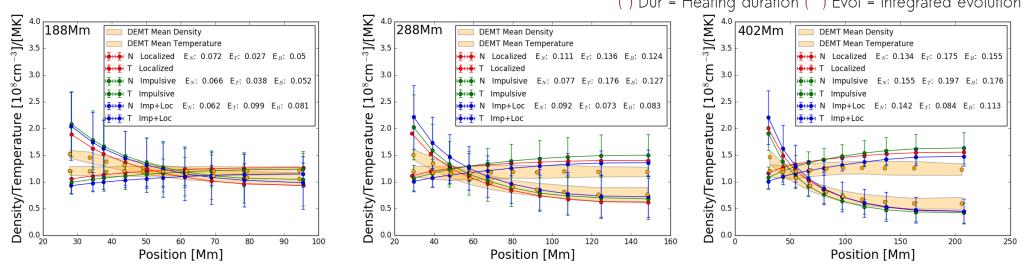
Typical HYDRAD profiles of density and temperature

- Chromospheric depth: 5 Mm.
- Loop heating regime:

Bradshaw et al. 2013

Hydrodynamic modeling

 $E_{M} = mean(E_{N}, E_{T})$


We compare the 10 DEMT typical loop leg profiles with HYDRAD profiles obtained with the three described heating mechanism.

We compare quantitatively DEMT and HYDRAD profiles by defining an error:

$$E_{N,T} = mean(\frac{|HYDRAD_{N,T} - DEMT_{N,T}|}{DEMT_{N,T}}$$

L [Mm] Dur [s] (*) E[ergcm⁻³s⁻¹] Evol [s](**) Best fit E_N E-EM Localized 188 9600 0.06 0.04 0.05 0.0003 400 Imp+Local 230 200 0.007 9600 0,08 0,02 0.05 Imp+Local 288 200 0.01 9600 0.10 0.08 0.09 348 200 0.01 9600 0.11 0.09 0.10 Imp+Local Imp+Local 402 300 0.007 9700 0.14 0.07 0.11 Imp+Local 454 300 0.007 9700 0.15 0.09 0.12 Imp+Local 525 300 0.007 9700 0,24 0.17 0.10 Imp+Local 597 300 0.007 9700 0.28 0.09 0.19 Imp+Local 0.20 672 300 0.007 9700 0,28 0,13 Imp+Local 807 300 0.007 9700 0.43 0.24 0.34

(*) Dur = Heating duration (**) Evol = integrated evolution

Example of comparison between HYDRAD and DEMT profiles for loop length of 188, 288 and 402Mm

Conclusions

- Using DEMT+PFSS technique we obtained 10 typical loops that represent statistically the quiescent corona.
- Typical loop legs: Quasi-isothermal and with deceasing density and magnetic field profiles as expected.
- We modeled the 10 typical loop legs with the 1D HD model HYDRAD, using three different heating regimes.
- As a result of the comparison, the error for shorter loops is less than 15% in both, density and temperature.
- Longer loops cannot be correctly modeled possibly because they widely depart from a semi-circular geometry.
- We found that localized (both, impulsive and constant) heating at the coronal base is the best scenario to reproduce the reconstructed properties of quiet-sun coronal loops.

Future work

- Add to our models variations on the loop cross section and inclination angle.
- Explore the development of thermal non-equilibrium (TNE) in quiet-sun loops.