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Fig. 6: Simplified illustration of the magnetic topology 
consistent with our results.

Joint distributions give interesting 
information about how different 
parameters are correlated in the inference, 
clearly pointing out the presence of 
ambiguities. To obtain an approximate 
insight, the joint distribution can be 
summarized by showing the correlation 
matrix in Fig. 4:

The checkerboard pattern found in the 
temperature indicates that reductions in 
the temperature at some locations can be 
compensated by increases in other 
locations.

We also found expected correlations 
between the broadening effect of the 
microturbulent velocity and the 
temperature to the shape of the profile.

In spectropolarimetry, we call inversion to the process of finding the best fit to a given spectra by 
modifying an atmospheric model with physical quantities like temperature, velocity, magnetic field and 
comparing the emergent spectra. This method is too slow when is applied to many pixels. Recently, we 
have seen that standard artificial neural networks are much faster by learning the “average” mapping 
between spectra and physical quantities; but this is a problem if degeneracies or multimodal solutions 
exist. On the other hand, Bayesian inference allows us to obtain the full probability distribution 
including uncertainties, correlations, and if our distribution is (or not) multimodal, but it implies exploring 
the parameter space by running the forward model several thousand times. So, is there any way to 
perform fast Bayesian inference?

As a first example, we illustrate here the capabilities of the method in a case where the forward 
modelling is fast enough to allow a comparison with the exact solution obtained with a Markov Chain 
Monte Carlo (MCMC) method. For that we have chosen a simple Milne-Eddington model with five 
parameters that controls the intensity profile of the spectral line. 

We have created a database of 106 pairs of examples (parameters vs spectra). We optimize the 
transformations of the normalizing flow, like in classical neural networks, but in this case to reproduce 
the distribution of the data. Once trained, the NFlow can produce the distribution for any given 
observation as accurate as the MCMC sampling method, with the corresponding uncertainties and 
degeneracies like the ones between the  absorption of the line, the source function and the Doppler 
width with a banana-shape.

We have explored the usage of normalizing flows to accurately infer the posterior distribution of a solar 
model atmosphere (parameters, correlations, and uncertainties) from the interpretation of observed 
photospheric and chromospheric lines.

A natural extension of this work would be to include the four Stokes parameters to infer the magnetic 
properties of our target of interest, while also setting more constraints in the rest of the physical 
parameters.
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Fig. 3: Atmospheric stratification for two examples. The colored bands of each curve 
indicate the standard deviation of each distribution.

The real improvement comes when the new method is applied to non-LTE inversions, which are more 
computationally demanding than the previous example. Following the same procedure, we create a 
large dataset with synthetic profiles of a photospheric iron line and the chromospheric CaII line at 
8542Å. Figure 3 shows two profiles and their stratification of  temperature, velocity, and microturbulent 
velocity. 

To illustrate the performance of this technique with different spectral lines, we have trained two 
normalizing flows: one only using the FeI line which gives the orange solution and another which 
also uses the CaII profile and produces the brown solution. From the width of the solutions (here the 
bands of 1 sigma of the distribution), we see that just looking to the database, the normalizing flow 
learns the range of sensitivity of each spectral line. This inference takes around 1 second (producing 104 
samples) while an MCMC would take many hours or even days.

Fig. 2: Joint and marginal posterior distributions for the physical parameters 
involved in the Milne-Eddington model.

4. N-LTE inversion

1. Introduction 2. Normalizing flows

5. N-LTE correlations

The novel tecnique that allow us to perform fast Bayesian inference is known as normalizing flows 
(NFlows), and they are a set of invertible and parameterized transformations that convert a simple 
distribution into an approximation of any other complex distribution. With this new technique, we 
approximate the probability distribution of our target by a transformation from a simple probability 
distribution. If these transformations are conditioned on observations (CNFlows, see right panel of 
Fig. 1), we can train normalizing flows to return Bayesian posterior probabilities for any 
observation. For comparison, there is a sketch of a standard artificial neural network on the left 
side of Fig. 1 which outputs the average mapping. 

6. Summary

3. Milne-Eddington model

Fig. 1: Comparison between an artificial neural network and a conditional 
normalizing flow with parameters φ.

More info here: Díaz Baso et al, submitted to A&A (https://arxiv.org/abs/2012.06229)

Fig. 4: Correlation matrices calculated for the inferred 
atmospheric stratification. Blue/red indicates 
positive/negative correlations, respectively. 
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