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MANCHA3D 2F code. Two-fluid equations
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Collisional terms

We define « so that : peven + pilVin = pupca®; a = a®l + acx

Sn _ pcl-\rec _ pnFion

R, = ,ocuc]:“reC - pnunrion + pnpca(uc - un)

1 1 k
pn nFlOn B

2 vy—1my

1 1 ks

Jr§(Uc2 — Un )pnpca + ﬁmi(T Th)pupece

Mn —_ %Frecpcuz o (chcFreC . pnTnFion)



Rayleigh-Taylor instability 2D configuration
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N - Parameters of the simulations:
™ o Density contrast (“NN”)

o Configuration of the background
magnetic field: perpendicular to
the perturbation plane (“P”) or
sheared (“L1”)

o Magnetic field strength (“B”)

o Elastic and inelastic collisions
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Background atmosphere
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Overview of the simulations



Sheared field

Sheared field

@ Bubbles and spikes form
in the nonlinear phase of
the instability.

@ Similar magnetic
structures form in the
simulations with sheared

— magnetic field.

movie


https://www.dropbox.com/s/ndvnv80se50cvpi/sh1-wn.mp4?dl=0

Density contrast
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https://www.dropbox.com/s/0bahw7vrehn6su9/sh1-wn-nn.mp4?dl=0

Magnetic field strength
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https://www.dropbox.com/s/rk0ucqkaqp56zk8/sh1-wn-NN-B-large.mp4?dl=0

Perpendicular magnetic field configuration

Perp. field (NN)
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@ More smaller scales and
larger growth rate when
the magnetic field is
perpendicular to the
plane of the perturbation
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https://www.dropbox.com/s/wzaab8mpvl7uc15/perp-wn-nn.mp4?dl=0

Analysis of the results



Growth of the modes
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The small scales which do not have an initial linear phase are
suppressed by the viscosity and ion-neutral collisions.




Linear growth rate
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@ The linear growth rate is smaller when the field is sheared.

o The linear growth rate decreases when the shear length
decreases, going to zero for sufficiently small shear length.

@ The small scales cutoff that appears in the simulations is
due to the viscosity and ion-neutral collisions.




Elastic collisions

e Comparison of simulated growth 2%
rates with/without elastic

collisions at different resolutions L
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which can be viewed as a loss of
contrast in the density snapshots.
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Decoupling

Vertical

Horizontal
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v = vze [km/s]

100 o The largest decoupling is
localized where the
magnetic field lines are
most compressed and
bent.

@ The decoupling can be as
much as 5% of the
—100 velocity.
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https://www.dropbox.com/s/kkxg4j3dlevua8w/sh1-wn-Dec.mp4?dl=0

Magnetic structures

E,,=magnetic energy, E.=charges kinetic

energy, E,=neutrals kinetic energy
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@ The in-plane and the out of plane components of the magnetic energy
become correlated at intermediate and small scales.

o Depending on initial equilibrium, a large fraction of free energy of the
prominence may be deposited into the magnetic energy.
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Conclusions

@ The component of the magnetic field parallel to the direction of the
perturbation suppresses the growth of the small scales. The growth rate
decreases with the decrease of the shear length of the magnetic field.

e Increased density contrast leads to earlier development of smaller scales.

@ The suppression of the growth rate of the small scales is due to the effect
of elastic collisions.

e Jon-neutral collisions qualitatively modify the structure of RTT modes for
high mode numbers; the effect of viscosity appears at yet smaller scales.

o Nonlinear evolution of RTI shows correlation between the level of
magnetic activity, magnetic structure formation, and the degree of the
charge-neutral decoupling. On intermediate and small scales, spectral
structure of in-plane and perpendicular components of the magnetic field
become correlated.
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