Methodology for estimating the magnetic Prandtl number and application to solar surface small-scale dynamo simulations

F. Riva* and O. Steiner

Istituto Ricerche Solari Locarno (IRSOL), Università della Svizzera italiana (USI), CH-6605 Locarno-Monti, Switzerland

What are the intrinsic numerical viscosity and resistivity? How does the action of solar dynamos depend on Pr_m ?

Introduction

Momentum equation

Induction equation

$$\frac{\partial(\rho\mathbf{v})}{\partial t} + \nabla \cdot (\rho\mathbf{v}\mathbf{v}) = -\nabla p + \rho\mathbf{g} + \mathbf{F}_{\mathrm{EM}} + \frac{\nu\rho\nabla^2\mathbf{v}}{\uparrow}$$

$$\frac{\partial\mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = \eta\nabla^2\mathbf{B}$$
viscosity
resistivity

Introduction

Momentum equation

$$\frac{\partial(\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p + \rho \mathbf{g} + \mathbf{F}_{EM} + \nu \rho \nabla^2 \mathbf{v}$$

Induction equation

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = \mathbf{\eta} \nabla^2 \mathbf{B}$$

Reynolds number

$$Re = \frac{uL}{\nu}$$

Magnetic Reynolds number

$$Re_{\rm m} = \frac{uL}{\eta}$$

Magnetic Prandtl number

$$Pr_{
m m} = rac{Re_{
m m}}{Re} = rac{
u}{r_{
m m}}$$

For the Sun: $Re \gg 1$

$$Re_{\rm m} \gg 1$$

$$Pr_{\rm m} \ll 1$$

Is small-scale dynamo action on solar surface important?

 $Pr_{
m m}\ll 1\Rightarrow\;$ Cannot predict *a priori* which one wins between amplification and dissipation of magnetic fields

Is small-scale dynamo action on solar surface important?

 $Pr_{
m m}\ll 1\Rightarrow\;$ Cannot predict *a priori* which one wins between amplification and dissipation of magnetic fields

⇒ We need numerical simulations! e.g., CO⁵BOLD [Freytag et al., 2012]

Is small-scale dynamo action on solar surface important?

 $Pr_{
m m}\ll 1\Rightarrow\;$ Cannot predict *a priori* which one wins between amplification and dissipation of magnetic fields

BUT: intrinsic numerical diffusivities!

- Make it difficult to reach realistic Re and Rem
- Re and Re_m generally unknown ⇒ it complicates the interpretation of results

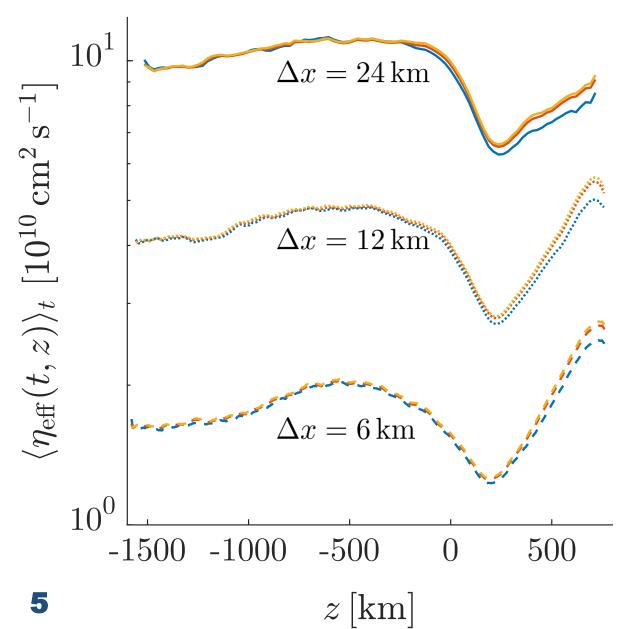
Methodology for estimating Pr_m

Based on method of Projection of Proper elements (PoPe) [Cartier-Michaud et al., 2016]

• Step 0
$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0$$

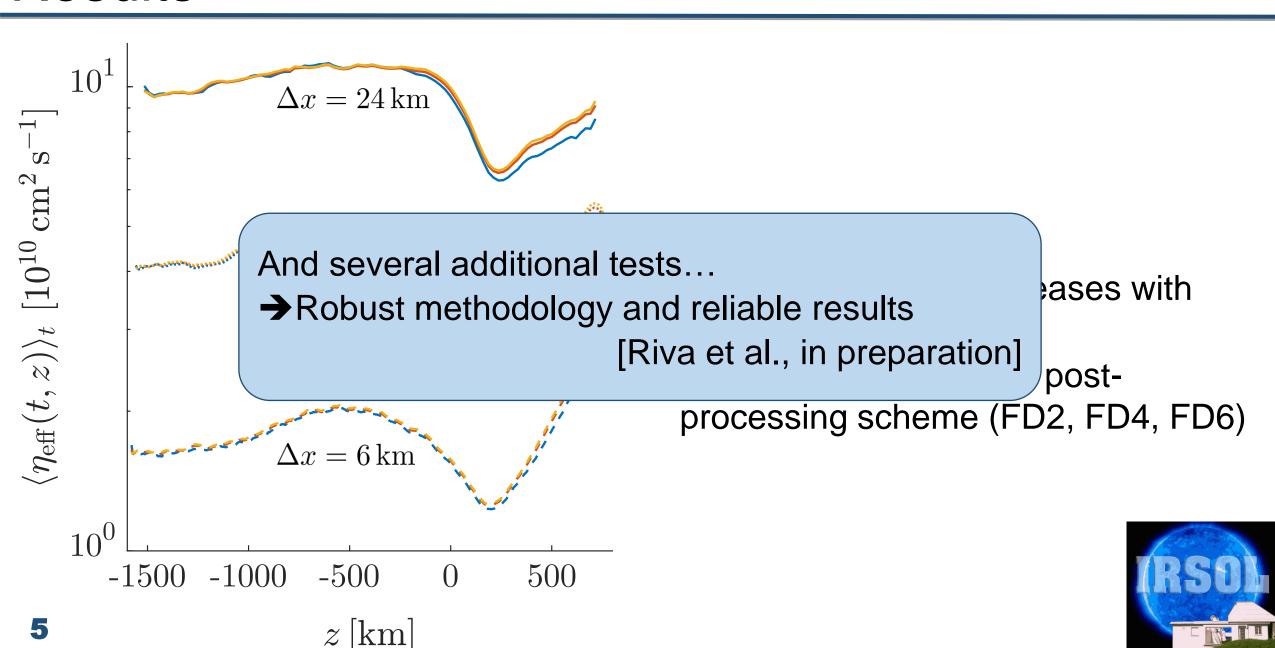
$$\partial_t \mathbf{B} = \sum_i w_i O_i(\mathbf{B}, \mathbf{v})$$
$$\{w_i\} = \{1, -1\}$$
$$\{O_i\} = \{\nabla \cdot (\mathbf{B}\mathbf{v}), \nabla \cdot (\mathbf{v}\mathbf{B})\}$$

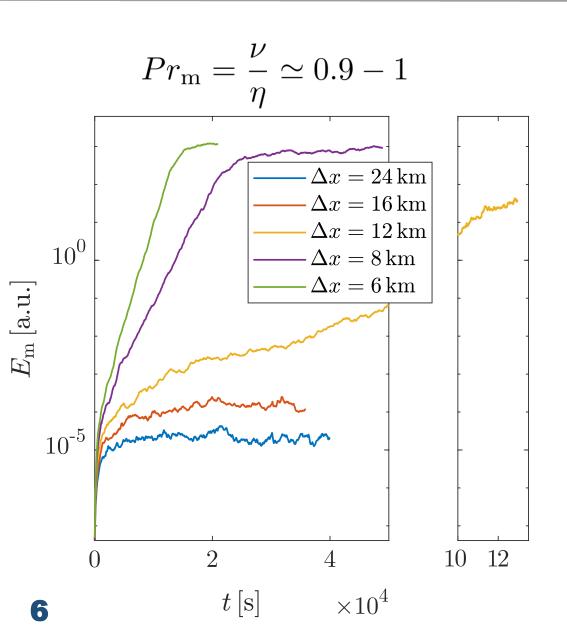
Methodology for estimating Pr_m


Based on method of Projection of Proper elements (PoPe) [Cartier-Michaud et al., 2016]

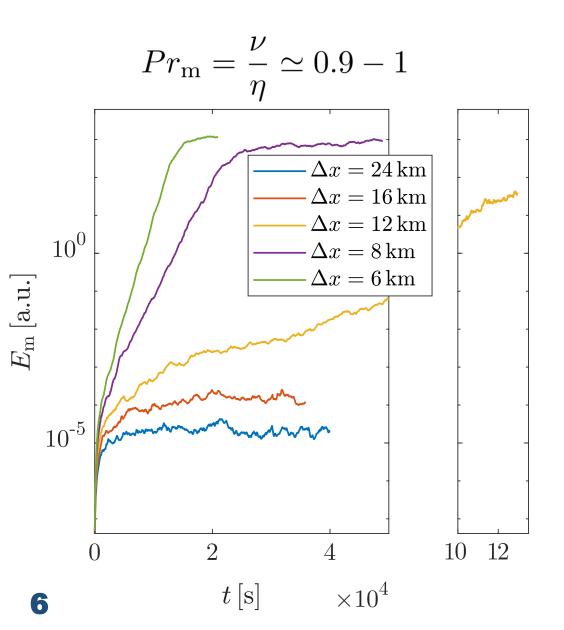
• Step 0
$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0$$
 \longrightarrow $\partial_t \mathbf{B} = \sum_i w_i O_i(\mathbf{B}, \mathbf{v})$

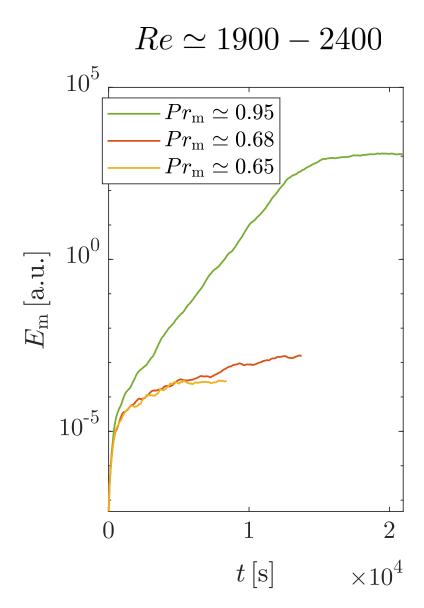
- <u>Step 1</u> Numerical solution from simulation code $\delta_t^{\mathrm{sc},h} \mathbf{B}^h = \sum_i w_i O_i^{\mathrm{sc},h} (\mathbf{B}^h, \mathbf{v}^h)$
- Step 2 Introduce a post-processing scheme to compute ∂_t , $\{O_i\}$, ∇^2 $r^h(\{\tilde{w}_i,\eta_{\mathrm{eff}}\}) \equiv \|\boldsymbol{\delta}_t^{\mathrm{pp},h}\mathbf{B}^h \sum_i \tilde{w}_i O_i^{\mathrm{pp},h}(\mathbf{B}^h,\mathbf{v}^h) \eta_{\mathrm{eff}}(\nabla^2)^{\mathrm{pp},h}\mathbf{B}^h\|$
- Step 3 Minimize $r^h(\{\tilde{w}_i, \eta_{\text{eff}}\})$ for $\tilde{w}_i, \eta_{\text{eff}}$
- Step 4 Repeat with momentum equation for $\nu_{\rm eff}$
- Step 5 Compute $Pr_{
 m m,eff} = rac{
 u_{
 m eff}}{\eta_{
 m eff}}$


Results


- Dependence on height
- Intrinsic resistivity decreases with resolution
- Results independent of postprocessing scheme (FD2, FD4, FD6)

Results




Dynamo simulations

Dynamo simulations

Conclusions and future perspectives

Conclusions:

- Extended (i)PoPe methodology to estimating viscosity and resistivity in radiative MHD codes
- Applied methodology to CO5BOLD simulations and validated the procedure
- Demonstrated possibility of simulating self-generated magnetic fields with CO5BOLD, even at $Pr_{\rm m} \simeq 0.68$

Future work:

- Test with hyper-viscosity and hyper-resistivity
- Investigate impact of domain size and boundary conditions
- Investigate smaller Pr_m

