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Far-side helioseismology is routinely used to compute the wave field on 
the Sun’s hemisphere not facing the Earth using near-side helioseismic 
data. Active region predictions are then deduced from those wave fields 
due to the time-travel perturbation they induce on the waves. A detailed 
description of helioseismic holography can be found in Lindsey & Braun 
(2000a). These far-side predictions are crucial for improving Space 
Weather forecasting. Current techniques are limited to the detection of 
strong active regions due to the limiting signal-to-noise. 

A neural network approach was developed to achieve better far-side 
active region predictions than standard helioseismic methods. We 
tested the network and compared its outputs with those of 
phase-sensitive helioseismic holography, finding that the network 
greatly improves the detections.

Data
Far-side seismic maps

We used maps obtained from the Joint Science Operation Center 
(JSOC) repository, at http://jsoc.stanford.edu/ajax/lookdata.html, 
computed using helioseismic holography from Doppler data obtained by 
the Helioseismic and Magnetic Imager (HMI) onboard the Solar 
Dynamics Observatory (SDO). The seismic maps are published in 
Carrington coordinates. Two kinds of phase-shift maps are published 
on the JSOC repository, one computed with 24 hours of Doppler data 
(used as network inputs) and the other computed using 5 days of data 
(used as standard approach inputs).

STEREO/SDO data

As proxies of active regions, we used STEREO/SDO 304 Å Carrington 
maps from the Solar Museum Server of NASA, found at 
https://solarmuse.jpl.nasa.gov/data/euvisdo_maps_carrington_12hr/304
fits/ (Liewer et al, 2014). 

Neural network:

FarNet (Felipe and Asensio 2019) is a fully convolutional neural 
network with a U-net architecture (Ronneberger et al. 2015). FarNet 
takes as input 11 consecutive phase-shift maps computed from HMI 
Doppler data using helioseismic holography. Each map is obtained from 
observations acquired during 24 hours and the temporal cadence 
between consecutive maps is 12 hours. Only a region of the seismic 
maps, centered on the central meridian of the far-side and ranging 120◦ 
in longitude and 144◦ in latitude, is given to the network as input. 

The output of the neural network consists of a probability map with the 
same size as the input maps. The reliability of the detections are based 
on the integrated probability (Pi) of the output blobs, with units of deg2. 
A threshold of Pi>100 has been taken as a real detection in previous 
works (Felipe and Asensio, 2019).

Fig. 1. Network Architecture.

Standard helioseismic method
The standard helioseismic method for far-side activity detection uses 
data from a surface region on the near-side of the Sun (pupil) to infer 
the properties of a region on the far-side (focal point). The presence of 
strong far-side active regions is routinely detected using Stanford’s 
Strong-Active-Region Discriminator (SARD) on phase-shift maps 
processed with five days of HMI Doppler data. The method searches 
for regions where the negative phase-shift is greater than 0.085 rad (4s 
time-shift) and calculates their corresponding seismic strength (S), 
which is given by the integrated negative phase shift over the area of 
the region. A signal is classified as a far-side active region if the seismic 
strength (S) exceeds a threshold of 400 μHem rad (Liewer et al. 2017).

Comparison method
We studied the performance of both methods with data from April 2011 
to May 2016. 2342 far-side active regions predictions were computed 
with each method. We compared the outputs of both methods with 
STEREO/SDO EUV images. EUV emission is linked with magnetic 
activity and has been used as an activity proxy by Liewer et al. 2017. 

The predictions are computed using data from a range of dates (6 days 
in the case of the neural network and 5 in the case of the standard 
approach), which can lead to uncertainties on the position of the active 
regions on the predictions. We compared each prediction with a range 
of EUV images centered on the prediction date. We studied the 
comparisons of the outputs of both methods with 3, 7, and 11 
STEREO/SDO Carrington images (24, 72 and 120 hours of data).

We computed activity masks from EUV images, using a 
date-dependent threshold for each image that was calibrated with HMI 
nearside magnetograms. Then, we compare the blobs of the outputs of 
both methods with the blobs on the generated activity masks that fell on 
the comparison range of said output. A detection was confirmed if there 
was a feature on one of the activity masks of the comparison range with 
a centroid within ±15º in longitude and ±5º in latitude from the centroid 
of the output blob at study. If the output blob had an area over 127 
deg2, superposition with features on activity masks was taken as a 
detection. This area was selected because it is the typical area of a 
Pi=100 region on the network outputs. If none of the criteria were met, 
the output blob was considered a false positive. 

Results:

For S>400, the standard method detected 1334 active regions, with 52 
false positives, a 3.75% of false positives. For Pi>113 and a false 
positive percentage of 3.74% (nearest to the standard method result for 
S>400), the network detected 1958 active regions. For the same 
percentage of false positives, the neural network can provide a 47% 
increase in the number of far-side active region detections confirmed by 
their extreme ultraviolet brightness.

Table 1. Detections, false positives and false positives percentage given by the 
standard method (first row) and for the neural network (second row), for regions with 
S>400 and Pi>113. Pi>113 gives the closest percentage of false positives to S>400, 

increasing the detections by 47%.

On figure 3 it can be noted how, for every range of study, when false 
positives tend to zero, the network returns more detections than the 
standard method. For the 24 hours study, for Pi>120, the network 
returns nearly zero false positives and close to 2000 detections, while 
for the standard method, for S>400, the method returns nearly zero 
false positives but less than 1500 detections.

Fig. 2: First column: STEREO images and silhouettes of network detections with 
Pi>100 (green) and standard method detections with S>400 (yellow). Second column: 
EUV masks with same silhouettes. Third column: 5 days cumulative phase-shift maps 

with standard method silhouettes for S>400. Fourth column: network outputs with 
network silhouettes for Pi>100.

Fig. 3. Detections (blue dots) and false positives (orange dots) from FarNet (first row) 
and from the standard seismic method (second row) over the whole range of dates at 
study. Each dot corresponds to the detections with Pi or S over the X axis value. Each 
column represents the results of the comparison with 24 h (first column), 72 h (second 

column), and 120 h (third column) of STEREO data. 

Fig. 4. Number of true detections from both methods as a function of the ratio of false 
positives to total positives. Second row shows a close-up look at the results from 

thresholds higher than S = 400 (standard seismic method) and Pi = 100 (FarNet). Each 
column represents the results of the comparison with 24 h (first column), 72 h (second 

column), and 120 h (third column) of STEREO data.
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