Benchmarking and optimizing EUHFORIA2.0 coronal model for space weather

By Dr. Barbara PERRI¹ •

Collaborators: Dr. Peter LEITNER², Dr. Stefaan PO EDTS¹, Dr. Andréa LANI¹, Michaela BRCHNELOVA¹, Tinatin BARATASHVILI¹, Dr. Fan ZHANG¹, Dr. Blazej KUZMA¹

> 1. CmPA, KU Leuven, Belgium 2. Institute of Physics, Graz, Austria

Barbara PERRI

UN

09/09/2021

Online Meeting

 \rightarrow Space weather forecasting depends heavily on the modeling of the heliosphere

Heliosphere observations

localized structures such as CIRs or HSSs

 \rightarrow Need to take into account the various structures at the different scales

ESPM-16

Online Meeting

09/09/2021

Introduction

Limit cases

Numerical benchma

Validation with observations

4/16

Solar wind modeling

Description of the model

[Lani+2005/2006, Kimpe+2005, Maneva+2017]

Use of the COOLFluiD framework for scientific HPC → Use of implicit scheme for fast MHD solution

Main features of the preliminary model:

- Ideal MHD
- Finite volume method
 - Cartesian
 - Inclusion of gravity
- Unstructured mesh (no polar singularity!)

Approximations for the first most basic validation:

- The heating is polytropic
- We do not include rotation yet
- We use the HLL solver (HLLD in progress)

|--|

ESPM-16

Online Meeting

Description of the model

Initialization:

- Poisson solver for magnetic field
- Analytical polytropic wind solution

→ We will present here the benchmarking procedure we have used to validate the code
 → Comparison with the Wind-Predict code (same ICs and BCs) and observations
 [Réville+2015a/2020, Perri+2018]

Barbara PERRI

7/16

Limit case 1: Dipole

Dipole of 1G amplitude (at the poles) + 1.5 M K corona

 \rightarrow Shape of the streamer and end velocity slightly different \rightarrow Effects of the numerical differences (probably effect of the limiter)

 \rightarrow We see mainly the effect of the limiter and polar boundary condition

D 1		DT	DDT
- Kow	2040	DH	ואא
- 12/11			
	0 00200		

Limit case 2: Quadrupole

Quadrupole of 1G amplitude (at the poles) + 2 M K corona

→ Very good qualitative agreement, the main difference being the sharpness of the streamers (due to the limiter)

→ In normalized difference, the polar boundary condition has the most impact
→ In relative difference, the limiter has the most impact

11/16

Convergence of the limit cases

With the implicit scheme, we can optimize the CFL to reach convergence sooner → We compare the time needed to reach -3 residuals in velocity with WP

	COOLFluiD	Wind-Predict
Dipole (coarse mesh)	6.8 min	30 min
Quadrupole (coarse mesh)	9.8 min	30 min
Quadrupole (fine mesh)	58 min	3h30

 \rightarrow Even for simple cases, between 3 and 5 times faster than explicit MHD codes

Benchmark on a synoptic map

We used a GONG synoptic map corresponding to the CR2077

 \rightarrow Minimum of activity but with some structures, so stable and suited for validation

 \rightarrow Good agreement, as expected we have effects of the polar BC and edges of streamers

Barbara PERRI	ESPM-16	Online Meeting	09/09/2021

Convergence time

Same as for the limit cases, we optimize the CFL for the map case and compare with WP

 \rightarrow Very suited for space weather forecast (2h instead of >1 day)

Online Meeting

Observations at minimum of activity

For the minimum of activity, reproduction of the eclipse of the 24th October 1995
→ Use of the WSO map of CR1902, and comparison with the magnetic field

Observations at maximum of activity

For the maximum of activity, reproduction of the eclipse of the 11^{th} August 1999 \rightarrow Use of the WSO map of CR1954 (more difficult to compare with polytropic)

[Mikic et al. (2008)]

Conclusions and Perspectives

Conclusions:

- We have developed a new coronal model dedicated to space weather forecasts
- This model has been validated on simple and realistic magnetic topologies for a polytropic heating
- The **implicit scheme** allows us to be **faster than explicit MHD codes** at both minimum and maximum of activity
- The model **compares well with observations** at both minimum and maximum of activity

Perspectives:

- Optimizing the computing time \rightarrow for maximum of activity and different inputs
- Inclusion of rotation \rightarrow rotating frame
- Better heating \rightarrow from polytropic to heating terms
- Better accuracy \rightarrow use of **r-AMR** (r refined, mesh moving)
- Better description of the small scales \rightarrow multi-fluid modeling

Theple would for a	out attention	Acknowledgements:		
Thank you for y	our allenuon.	European Union's Horizon 2020 No 870405		
barbara.perri@	kuleuven.be ^I	ESA project "Heliospheric modelling techniques"		
		(AO10125-GT18-004EP)		

Barbara PERRI	ESPM-16	Online Meeting	09/09/2021
---------------	---------	----------------	------------