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University Solar flare turbulence: background
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O Turbulence is an important mechanism for the transfer of magnetic energy e.g.
Larosa & Moore 1993, Petrosian 2012, Vlahos et al. 2016.

O Turbulence may dissipate energy over multiple fragmented regions during the
flare e.g. Vlahos et al. 2016, Gordovskyy et al. 2016.

O Energy is transferred from large scales (~size of a solar flare loop 109 cm) to
small scales (particle level).



Northumbria

university  Evidence for turbulence in solar flares?

NEWCASTLE

O Loop top/footpoint parameter differences/ratios

Comparing electron properties in the LT and at FPs
suggests ‘coronal trapping’ in some flares.
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See also: Petrosian et al. (2002), Battaglia & Benz (2006)
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O Turbulent scattering can lead
to diffusive transport of electrons
and trap them in the corona e.g.

Schlickeiser 1989, Bian et al.
2011, Kontar et al. 2014.
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O Musset et al. (2018) demonstrated the
presence of scattering from combined
X-ray and microwave observations.

As ~ 2 x 10%[cm] (

25[;\/]) |



M Northumbria

university  Evidence for turbulence in solar flares?

5 s » O Strong electron scattering is required for efficient
K stochastic acceleration (Sturrock 1966, Miller et al
1997, Petrosian & Donaghy 1999, Bian et al 2012).

O Possible isotropy?

The detection of close to isotropic electron
distributions from X-ray albedo could suggest a
stochastic acceleration mechanism.

N\
LLD
S~
LL-O
g
>
Q
O
- —
O
L
-
<

Electron Energy (keV)




Northumbria

mmmmmm
e frry

BryE AryE

University Turbulence from line broadening

‘ Turbulence can be inferred spectroscopically using line broadening. ‘

O The properties of the plasma are found by determining the first three moments:

Zero moment=Integrated intensity

First moment=Centroid position

Second moment=Variance (broadening)

Intensity
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Optically thin flare lines: ion and plasma
velocities determine width and shape.

The non-thermal velocity is attributed to
plasma turbulence.
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O Turbulence might produce non-Gaussian
line shapes e.g., Jeffrey et al. 2016, 2017,
2018, Dudik et al. 2017, Polito et al 2018.
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O Early spatially integrated results:

Antonucci & Dodero 1995
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O Spatially resolved observations with Hinode EIS and IRIS: flares/brightenings

Doschek et al. 2014 Milligan 2011

Fe XXIV, 255 Angstroms
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Solar flare turbulence: observations

Turbulence can be inferred spectroscopically using line broadening.

DN (maximum setto 1)
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IRIS provides low atmosphere (TR/chromosphere)

spectroscopy at time resolutions as low as <2 s.

One observation (of Si IV 1402.77 A), sit-and-stare with
<2 s cadence suggests turbulence in the transition region
at the start of a flare?
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‘Turbulence plays a vital role in the transfer of energy from magnetic fields. ‘

Kontar et al. 2017
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‘Turbulence plays a vital role in the transfer of energy from magnetic fields. ‘

Kontar et al. 2017
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O Turbulence OR superposition of unresolved plasma flows along the line of sight?

O Polito et al. 2019 suggest that it is difficult to reconcile symmetrical broadened
lines with flows (flows are more likely to produce asymmetrical broadened lines).
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O Stores et al. (2021, under review) provides a detailed study of turbulence in space.
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O Stores et al. (2021, under review) provides a detailed study of turbulence in space.

During/After HXR peak
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O Many turbulent acceleration models in
~linear decrease in the past has used a ‘leaky box’ type
broadening model (e.g., Chen & Petrosian 2013,
: Bian et al. 2014) where the spatial
distribution of turbulence in the flare is
not taken into account.
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Multiple observations suggest that turbulence generated by magnetic reconnection
plays a vital role in both the acceleration and transport of flare energetic electrons.

O Turbulence is often discussed as a localised phenomena occurring in the corona
but many spatially resolved observations show it is present in many flare regions.

O Observationally driven studies taking into account spatial changes in turbulence
are an important next step for determining the true role of turbulence in solar flare
particle acceleration and transport and for constraining properties.

O STIX (Krucker et al. 2020) onboard
Solar Orbiter will observe solar flare X-
rays between 4 and 150 keV.

O Upcoming stereoscopic observations
with STIX and LEO missions (ASO-S/HXI
and Aditya/HEL10S) will help to measure
electron anisotropy - will be interesting if
strong directivity is detected!




