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ABSTRACT

Context. It is known that hydrodynamic triangular jets (i.e. the jet with maximal velocity at its axis, which linearly decreases at both
sides) are unstable to anti-symmetric kink perturbations. The inclusion of the magnetic field may lead to the stabilisation of the jets.
Jets and complex magnetic fields are ubiquitous in the solar atmosphere, which suggests the possibility of the kink instability in
certain cases.
Aims. The aim of the paper is to study the kink instability of triangular jets sandwiched between magnetic tubes (or slabs) and its
possible connection to observed properties of the jets in the solar atmosphere.
Methods. A dispersion equation governing the kink perturbations is obtained through matching of analytical solutions at the jet
boundaries. The equation is solved analytically and numerically for different parameters of jets and surrounding plasma. The analytical
solution is accompanied by a numerical simulation of fully non-linear magnetohydrodynamic (MHD) equations for a particular
situation of solar type II spicules.
Results. Magnetohydrodynamic triangular jets are unstable to the dynamic kink instability depending on the Alfvén Mach number
(the ratio of flow to Alfvén speeds) and the ratio of internal and external densities. When the jet has the same density as the surrounding
plasma, only super-Alfvénic flows are unstable. However, denser jets are also unstable in a sub-Alfvénic regime. Jets with an angle
to the ambient magnetic field have much lower thresholds of instability than field-aligned flows. Growth times of the kink instability
are estimated to be 6−15 min for type I spicules and 5−60 s for type II spicules matching with their observed lifetimes. The numerical
simulation of full non-linear equations shows that the transverse kink pulse locally destroys the jet in less than a minute in type II
spicule conditions.
Conclusions. Dynamic kink instability may lead to the full breakdown of MHD flows and consequently to an observed disappearance
of spicules.
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1. Introduction

Flows and jets are essential building blocks of the solar atmo-
sphere. Many different types of jets are frequently observed in the
solar chromosphere and corona: spicules and mottles (Beckers
1968; De Pontieu et al. 2007; Rouppe van der Voort et al. 2009;
Tsiropoula et al. 2012; Moore et al. 2011; Sterling et al. 2020),
macrospicules (Pike & Mason 1998), X-ray jets (Shibata et al.
1992; Savcheva et al. 2007; Moore et al. 2013; Sterling et al.
2015, 2016, 2019), Extrem Ultraviolet (EUV) jets (Chae et al.
1999; Zhang & Ji 2014), chromospheric anemone jets
(Shibata et al. 2007; Nishizuka et al. 2011), among others. Coro-
nal X-ray jets can be driven by magnetic reconnection after the
emergence of new bipolar magnetic flux (Yokoyama & Shibata
1995; Moore et al. 2011) or mini-filaments (Sterling et al. 2015,
2016; Raouafi et al. 2016), while rebound shock waves may
lead to classical spicules and macrospicules (Hollweg 1982;
Murawski & Zaqarashvili 2010; Murawski et al. 2011).

Hydrodynamic flows are generally unstable (Chandrasekhar
1961; Drazin & Reid 1981), which may lead to the energy
dissipation and to the consecutive heating of solar atmospheric

? Movies associated to Fig. 9 are available at https://
www.aanda.org

plasma. Different flow profiles lead to the different types of insta-
bilities. The simplest is the basic flow of two fluids in paral-
lel infinite streams of different velocities, which is subject to
Kelvin-Helmholtz instability (Helmholtz 1868; Kelvin 1871).
Kelvin-Helmhotz instability has been intensively observed in
the solar atmosphere at boundaries of rising coronal mass
ejections (Ofman & Thompson 2011; Foullon et al. 2011, 2013;
Möstl et al. 2013), in solar prominences (Berger et al. 2010;
Ryutova et al. 2010) and in jets (Zhelyazkov et al. 2015, 2018;
Li et al. 2019). Various types of flows with smooth transverse
profiles are also unstable in certain conditions (Drazin & Reid
1981). Another interesting process is connected to the trans-
verse displacement of jet axis, which becomes unstable to the
dynamic kink instability due to the centripetal force acting on
flows in a curved path (Zaqarashvili 2020). The instability may
lead to the observed linear transverse motions of spicule axes
(De Pontieu et al. 2012; Kuridze et al. 2015) in certain condi-
tions.

Flows with smoothed transversed profiles are more difficult
to study. The simplest case is the flow with a linear transverse
profile, which can be analytically studied in various situations
(Drazin 2002). A jet with maximal velocity at the axis that lin-
early tends towards zero at boundaries is a simple model but
allows relevant conclusions about jets in the solar atmosphere to
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Fig. 1. Possible channels of plasma flows in the solar atmosphere: (a) between neighbouring magnetic flux tubes of the same polarity; (b) inside a
flux tube; (c) between neighbouring flux tubes of opposite polarities.

be drawn. This triangular jet is unstable to the antisymmetric or
kink instability for long wavelength perturbations in hydrody-
namics (Drazin 2002). As the solar atmosphere is generally per-
ceived by the magnetic field, the stability of triangular jets must
be studied in magnetohydrodynamic (MHD) approximation.

A magnetic field aligned with the axis of a flow generally sta-
bilises the sub-Alfvénic flows (Chandrasekhar 1961), while the
transverse magnetic field seems to have no effect on the instabil-
ities (Sen 1963; Ferrari et al. 1981; Cohn 1983). Therefore, the
magnetic field strength (namely Alfvén Mach number, i.e. the
ratio of the flow to Alfvén speeds) and topology are crucial for
the threshold of flow instability. Flows with angles to the mag-
netic field, for example axially moving twisted magnetic flux
tubes, can be always unstable (Zaqarashvili et al. 2010, 2014).
The magnetic field in the solar atmosphere is highly inhomo-
geneous and has a complex topology. Therefore, the field may
suppress the flow instability in some places, leading to the for-
mation of relatively stable flows. However, in certain areas flows
may become unstable, which leads to the heating and turbulence
of plasma.

For this work, we studied the stability of triangular jets in
the presence of a magnetic field in the solar atmosphere. We
derived the analytical dispersion equations for antisymmetric
(kink) modes of triangular jets imbedded in the external mag-
netic field. The dispersion equations have complex solutions in
certain conditions, which indicates the instability of the jets.
We also performed numerical simulations, which confirmed the
analytical thresholds and growth rates. Finally, the results were
applied to type I and type II spicules in the solar atmosphere,
which showed an interesting coincidence of instability proper-
ties and spicule dynamics.

2. Main equations

For a stability analysis of inhomogeneous jets, we used
the incompressible approximation. In general, compressibil-
ity affects the flow stability (Sen 1963), but the basic prop-
erties of the instability are still seen in the incompressible
limit. Therefore, we considered single-fluid, incompressible, lin-
earised MHD equations:

ρ

[
∂

∂t
+ V·∇

]
u + ρ(u·∇)V = −∇pt +

1
4π

(B·∇)b, (1)[
∂

∂t
+ V·∇

]
b = (B·∇)u + (b·∇)V, (2)

∇·u = 0, ∇·b = 0, (3)

where ρ, B, and V are the unperturbed density, magnetic field,
and flow, while b, u, and pt are perturbations in the magnetic

field, velocity, and total (hydrodynamic plus magnetic) pressure.
The unperturbed magnetic field is assumed to be homogeneous.
Gravity effects are neglected at this stage.

We considered a Cartesian coordinate system (x, y, z) and
a plasma jet, which has a slab structure along the x axis with
the half-width of d and flows in the (y, z) plane. The velocity
of the jet is homogeneous with regard to y and z, but it can
be either homogeneous or inhomogeneous across the slab. The
unperturbed magnetic field is directed along the z axis. The solu-
tions of Eqs. ((1)–(3)) can be searched for via normal modes:
Ψ(x) exp i(kyy + kzz − ωt). Then, the continuity of Lagrangian
displacement and total pressure at the slab boundaries gives the
dispersion relation for the normal modes with generally complex
ω. We note that the incompressible limit neglects the incoming
and outgoing waves from the slab (i.e. leaky modes are absent),
therefore the complex frequency means real instability of the
normal modes.

The magnetic field of quiet Sun regions is concentrated in
thin tubes at the photospheric level. However, the tubes rapidly
expand upwards in the chromosphere and may merge at some
heights (Fig. 1). The plasma, which forms spicules at greater
heights, may flow in three different channels: inside the tubes,
between the neighbouring tubes with the same polarity, and
between the tubes with opposite polarities (shown by arrows on
Fig. 1). There is no firm observational evidence to confirm in
which of these channels plasma flows. The different channels
may support the formation of spicules with different stability
properties. The direction and speed of flows strongly depend
on the formation mechanism of different jets, which is beyond
the scope of present paper. Here, we assumed that the jets are
already formed by some mechanism, and we studied their stabil-
ity for different parameters. The stability of hydromagnetic flows
depends on the transverse profile of the flow and the direction of
the flow with respect to the magnetic field. Before we move on
to triangular jets, we briefly review the stability of homogeneous
jets.

3. Homogeneous jets

Homogeneous jets have been studied elsewhere, therefore we
briefly describe the main properties of their instability. The
main conclusion concerning stability is that the flow-aligned
magnetic field stabilises the sub-Alfvénic flows (Chandrasekhar
1961; Sen 1964; Ferrari et al. 1980; Hardee & Norman 1988;
Singh & Talwar 1994). However, the perpendicular magnetic
field does not affect the instability, therefore one always can find
the exponentially growing unstable modes in a jet that has a com-
ponent perpendicular to the field.
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Fig. 2. Sketch of considered analytical setup, which corresponds to the
situation of Fig. 1c. A non-magnetic triangular jet is located between
the magnetic fields of opposite polarities.

The dispersion relation of antisymmetric perturbations
for a magnetised plane jet of half-width d can be written
as[
1 +

ρ0

ρe
tanh(kd)

]
ω2 − 2

ρ0

ρe
(k·V) tanh(kd)ω +

ρ0

ρe
tanh(kd)(k·V)2

−
ρ0

ρe
tanh(kd)(k·VA0)2 − (k·VAe)2 = 0, (4)

where ρ0 (ρe) and VA0 (VAe) are the density and Alfvén speed
inside (outside) the jet, k is the wave vector in yz-plane. This
equation can be obtained from the general dispersion relation of
Singh & Talwar (1994) as an incompressible limit.

If the jet is directed along the unperturbed magnetic field
(i.e. V ‖ VA), where the magnetic field is assumed to have
the same strength and direction inside and outside the slab for
simplicity, then the phase speed is always real for any sub-
Alfvénic flows (V < VA), which shows the stability of the
flows. However, if the jet has an angle with the magnetic field,
then the harmonics perpendicular to the magnetic field (i.e. with
k·VA = 0) always have a complex phase speed, which shows
the instability. Therefore, the jet, which flows at an angle to the
magnetic field, is always unstable for antisymmetric perturba-
tions. These antisymmetric perturbations cause the transverse
displacement of the jet axis, similarly to kink waves in mag-
netic slabs (Edwin & Roberts 1982). The transverese displace-
ments are stable in static magnetic tubes, but the flow inside the
tube leads to their instability due to the centripetal acceleration
(Zaqarashvili 2020).

The jet flowing inside the magnetic flux tube (the middle
arrow in Fig. 1) probably follows the magnetic field. Therefore, it
may not be susceptible to dynamic kink instability (Zaqarashvili
2020) and could represent the classical spicules. However, the
magnetic fields can be inclined at the tube boundaries, and thus
make an angle with respect to upward flows. Therefore, the
flows between the tubes may have components perpendicular to

the magnetic field, and hence they may be unstable due to the
dynamic kink instability.

4. Triangular jets

Now we consider a jet that has transverse velocity inhomogene-
ity, and we study how this transverse structure affects its insta-
bility properties. For simplicity, we assumed the simplest linear
profile of the flow and considered a triangular jet, which has its
maximum velocity at the slab axis and linearly decreases towards
slab boundaries. The stability of the jet is well studied in non-
magnetic fluids. It has been shown that the jet is generally unsta-
ble for long-wavelength, antisymmetric normal modes, while it
is generally stable for the symmetric modes (Drazin 2002). It is
in our interest to study how an external magnetic field influences
the stability properties of the jet. Finding an analytical solution
for MHD triangular jets is complicated, therefore we analysed
the situation when a non-magnetic jet was sandwiched between
two magnetic environments (Fig. 2). An especially interesting
situation may arise when a jet flows between the two tubes with
opposite polarities (Fig. 1c), where a neutral sheet is formed.
The magnetic field becomes negligible between the tubes, and
the non-magnetic jet is a good approximation.

Therefore, for the triangular jet we considered

|Bz| = const, V = 0, for |x| > d, (5)

Bz = 0, V = V0

(
1 − α

|x|
d

)
, for |x| < d, (6)

where the flow, V, has y and z components. The flow velocity is
maximal at the slab axis and linearly decreases towards bound-
aries. The parameter 0 ≤ α ≤ 1 governs the rate of flow inho-
mogeneity. α = 0 means the homogeneous jet, which recovers
the situation of previous subsection, while α = 1 describes the
jet that tends towards zero at the slab boundaries. A α = 1 case
was considered by Drazin (2002), but with a magnetic field free
environment. In general, the flow density, ρ0, is different from
the surrounding plasma, that is, ρ0 , ρe (ρe is the density in
external medium).

Equations ((1)–(3)) lead to the following:

ρ(k·V − ω)
[
∂2

∂x2 − k2
]

ux =
kzBz

4π

[
∂2

∂x2 − k2
]

bx, (7)

(k·V − ω)bx = kzBzux, (8)

where k =
√

k2
y + k2

z .
When ω , k·V and ω , kzVA, the plasma dynamics inside

and outside the slab are governed by the equation[
∂2

∂x2 − k2
]

ux = 0. (9)

The solution to this equation is a combination of exponential
functions and depends on boundary conditions on the slab cen-
tre, boundaries, and infinity.

We require the solution to vanish at infinity outside the slab,
therefore the resulting expression is

ux = Ae−k(|x|−d), for |x| > d. (10)

The solutions inside the slab can be antisymmetric (sinuous) or
symmetric (varicose) with regard to the slab centre.
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Fig. 3. Antisymmetric (kink) mode (Eq. (15)) solutions for the non-
magnetic case (Bz = 0) when α = 1 and ky,V0y = 0 (correspond-
ing to the solution of Drazin 2002). Upper and lower panels: real and
imaginary parts of frequency, respectively. Red solid lines correspond to
unstable modes, and blue dashed lines to the damped modes. Imaginary
solutions (and hence instability) vanish for kzd > 1.8 and for kzd → 0.
The frequency and growth rate are normalised by kzV0z.

For the antisymmetric kink mode, the solution inside the jet
is (Drazin 2002)

ux = B
cosh kx
cosh kd

+ D
sinh k|x|
sinh kd

, for |x| < d. (11)

These solutions must satisfy the continuity of Lagrangian
transverse velocity and total pressure at the slab boundaries,
which gives the following equations:

ux

k·V − ω
= const, at x = ±d, (12)

ρ

k·V − ω −
k2

z v2
A

k·V − ω

 ∂ux

∂x
− ρk·V′

1 − k2
z v2

A

(k·V − ω)2

 ux

= const, at x = ±d. (13)

Additionally, the third equation is obtained from the pressure
continuity condition at the slab centre:

ρ [k·V − ω]
∂ux

∂x
− ρk·V′ux = const, at x = 0. (14)

Equations (10)–(14) give the following dispersion relation
for the antisymmetric mode:[

1 +
ρ0

ρe
tanh kd

]
ω3 + k·V0

[
α

tanh kd
kd

−
ρ0

ρe
(3 − 2α) tanh kd − 1

]
ω2

+ (k·V0)2
[
α2

kd
ρ0

ρe

(
1 −

tanh kd
kd

)
+
ρ0

ρe
(1 − α)(3 − α) tanh kd

−
k2

z V2
A

(k·V0)2

]
ω +

ρ0

ρe
(1 − α)(k·V0)3

[
α2

k2d2 tanh kd −
α2

kd

− (1 − α) tanh kd
]

+ k·V0k2
z V2

A

[
1 − α

tanh kd
kd

]
= 0. (15)

This is a general dispersion relation, which can be analysed
in different contexts.

4.1. Non-magnetised jets

If the magnetic field is negligible (VA ≈ 0), one can consider the
jet in the XZ plane (i.e. ky,V0y = 0), and Eq. (15) is transformed

(for α = 1) into the dispersion equation of the non-magnetised
triangular jet (see Drazin 2002, Eq. (8.43)):

[
1 +

ρ0

ρe
tanh kzd

]
ω2 + kzV0z

[
tanh kzd

kzd
−
ρ0

ρe
tanh kzd − 1

]
ω

+
k2

z V2
0z

kzd
ρ0

ρe

(
1 −

tanh kzd
kzd

)
= 0. (16)

This equation has complex solutions in the interval 0 < kzd <
1.8 (i.e. the flow is unstable for long wavelength perturbations).
The solution to Eq. (15) in this case is shown on Fig. 3. The
frequency has an imaginary part in the interval 0 < kzd < 1.8,
which vanishes for kzd > 1.8.

If the magnetic field is presented, but the flow is not parallel
to the magnetic field (i.e. V0y , 0), then the modes with ky , 0
and kz = 0 (which are perpendicular to the magnetic field) are
governed by the same equation as Eq. (16), but kz and V0z are
replaced by ky and V0y. Hence, the flow is always unstable for
long wavelength perturbations, even in the presence of the mag-
netic field. This confirms the previous results that the normal-to-
flow magnetic field does not affect the Kelvin-Helmholtz insta-
bility (Chandrasekhar 1961; Sen 1964; Zaqarashvili et al. 2010,
2014).

4.2. α= 0 (homogeneous jet) limit

Next, we considered the limit of α = 0, which actually means a
homogeneous jet. Then, Eq. (15) is transformed into the follow-
ing equation:

( [
1 +

ρ0

ρe
tanh(kd)

]
ω2 − 2

ρ0

ρe
(k·V0) tanh(kd)ω

+
ρ0

ρe
tanh(kd)(k·V0)2

− k2
z V2

A

)
(ω − k·V0) = 0. (17)

When ω , k·V0, then we recover Eq. (4) (with VA0 = 0). We
note that Eq. (4) is transformed into the dispersion relation of
Alfvén surface waves in a static magnetic slab (V0 = 0) (see
Edwin & Roberts 1982, Eq. (8.43)). The antisymmetric modes
are unstable when

(k·V0)2

k2
z V2

A

>
ρe + ρ0 tanh(kd)
ρ0 tanh(kd)

· (18)

When ky = 0 and ρe = ρ0, then this inequality is replaced by
V0z/VA >

√
2/(1 − e−2kd), which actually means that the flow

is stabilised for all wavelength perturbations when VA/V0z >
√

0.5 ≈ 0.707. When VA/V0z <
√

0.5, the long wavelength
perturbations are stable, while the short wavelength perturba-
tions are unstable. The critical wave number can be estimated
as kzd = ln

(
1 − 2V2

A/V
2
0z

)−1/2
.

4.3. α = 1 limit

Next we consider the limit when the jet velocity vanishes at the
slab boundaries (x = ±d) i.e. α = 1. In this case, Eq. (15) leads
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Fig. 4. Growth rate (imaginary part of frequency) of antisymmetric
(kink) mode vs. normalised wave number kzd calculated from Eq. (15)
when α = 1 and ky,V0y = 0 for different ratios of inverse Alfvén
Mach number, M−1

A . Green, blue, cyan, and solid red lines correspond
to M−1

A = 0.5, 0.7, 0.9, and 1, respectively. Dashed lines show the cor-
responding solutions for the homogeneous jet α = 0, which is already
zero for M−1

A = 0.9 and 1. Here, ρ0/ρe = 1 and the growth rate is nor-
malised by kzV0z.
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Fig. 5. Same as Fig. 4, but for the density ratio of ρ0/ρe = 10. Green,
blue, cyan, and solid red lines correspond to M−1

A = 0.5, 1, 2, and 2.5,
respectively. The growth rate is normalised by kzV0z.

to the following equation (see also Zaqarashvili 2011):[
1 +

ρ0

ρe
tanh kd

]
ω3 + k·V0

[
tanh kd

kd
−
ρ0

ρe
tanh kd − 1

]
ω2

+ (k·V0)2
[

1
kd

ρ0

ρe

(
1 −

tanh kd
kd

)
−

k2
z V2

A

(k·V0)2

]
ω

+ k·V0k2
z V2

A

[
1 −

tanh kd
kd

]
= 0. (19)

This equation is transformed into Eq. (16) for the non-
magnetised case.

Figure 4 shows the growth rates of unstable modes against a
normalised wave number calculated from the dispersion relation
(15) for α = 1 (solid lines) for different Alfvén Mach number
values, MA = V0z/VA (the ratio of the flow speed at the slab cen-
tre and the external Alfvén speed), for ρ0/ρe = 1. It is seen that

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

k
z
d

0

0.5

1

1.5

2

2.5

3

Im

Fig. 6. Growth rate of antisymmetric (kink) mode vs. wave number
for modes with two different propagation angles, ky/kz, when flow is
directed 45◦ to the magnetic field, V0y/V0z = 1. The dashed green line
corresponds to M−1

A = 1 for ky/kz = 1, while green, blue, and solid red
lines correspond to M−1

A = 1, 5, and 10 respectively, when ky/kz = 10.

the flow is unstable only for finite intervals of the wave num-
bers. Therefore, only the harmonics with certain wavelengths are
unstable. On the other hand, homogeneous flows (α = 0, dashed
lines) are unstable when the wavelength is larger than the critical
one. Sufficiently strong magnetic field suppresses the instability
when M−1

A > 1 for triangular jets, which means that sub-Alfvénic
flows V0z < VA are stable. However, homogeneous jets can be
stabilised even for slightly super-Alfvénic regime, though they
have relatively stronger growth rates.

Figure 5 displays the growth rates for different Alfvén Mach
number values for the denser jet, ρ0/ρe = 10. It shows that the
denser jet needs stronger external Alfvén speed to stabilise the
kink instability (in this case, the Alfvén speed needs to be
2.5 higher than the flow speed at the slab centre). It is clear
from physical point of view that the denser jet has stronger
kinetic energy and therefore it required stronger magnetic energy
stabilisation.

If the flow is directed with an angle to the magnetic field
(i.e. V0y , 0) then the instability is not completely suppressed
by the magnetic field, as was mentioned in Sect. 4.1. Figure 6
shows the growth rates of unstable modes against wave number
for V0y = V0z, that is, the flow is directed at 45◦ to the magnetic
field. In this case, the modes with the propagation angle of 45◦ to
the magnetic field, ky/kz = 1 (dashed line), are only stabilised by
a sufficiently strong magnetic field. However, the modes with a
propagation angle close to 90◦ to the magnetic field (ky/kz = 10,
solid lines) are unstable even for a very high Alfvén speed of
VA/V0z = 10.

5. Discussion

Drazin (2002) showed that hydrodynamic 2D triangular jets are
unstable with regard to antisymmetric kink modes, while they
are stable when it comes to symmetric sausage modes. The kink
modes are unstable in certain wavelength intervals, while short
and long wavelength perturbations are stable (see Fig. 3). Here,
we studied the influence of the magnetic field on the kink insta-
bility of triangular jets in the connection to solar atmospheric
physics. In order to obtain analytical dispersion equations, we
considered a triangular jet sandwiched between magnetic field
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tubes (or slabs), which allowed us to solve the linearised prob-
lem and led to our analytical dispersion equation (Eq. (15)) using
appropriate boundary conditions.

The dispersion equation has solutions in the form of complex
wave frequency, which means the instability of corresponding
wave modes. The kink instability occurs at certain wave number
intervals depending on the flow speed at the axis, or more pre-
cisely on the flow-to-Alfvén-speed ratio (Alfvén Mach number).
Decreasing the Alfvén Mach number leads to the shortening of
the instability interval and the shifting of the interval to higher
wave numbers (see Fig. 4). After a certain Alfvén Mach num-
ber, the instability is terminated, hence the magnetic field sta-
bilises the kink instability. For the density ratio of ρ0/ρe = 1,
the instability ceases when M−1

A > 1 (i.e. for sub-Alfvénic flows;
see Fig. 4). While for the denser jet, ρ0/ρe = 10, the instabil-
ity ceases when M−1

A > 2.5 (see Fig. 5). Physically, it can be
understood as follows. Kink instability is related with the cen-
tripetal force, which is generated when the axis of the jet is
transversally displaced so the plasma flows in a curved trajec-
tory. This force is directed towards transverse displacement and
hence tries to enhance the displacement (Zaqarashvili 2020). On
the other hand, the Lorentz force tries to straighten the magnetic
field lines and hence acts against the instability. A denser jet has
more inertia and therefore stronger magnetic field (and conse-
quently a lower Alfvén Mach number) is needed to stabilise the
kink instability.

If the triangular jet is directed with an angle to the ambi-
ent magnetic field, then the instability may start well below the
threshold (see Fig. 6). This situation may arise for inclined jets
when the neighbouring magnetic field lines are vertical (as in
Figs. 1a and c) or for vertical jets when the surrounding tubes
are twisted. In both cases, the sub-Alfvénic jets could be unsta-
ble with regard to the dynamic kink instability. This process is
related to the fact that only a flow-aligned component of the mag-
netic field stabilises the flow instability (Chandrasekhar 1961).
The magnetic field component across the flow allows the veloc-
ity field to grow parallel to magnetic field lines without influence
from the Lorentz force, hence the flow instability starts in sub-
Alfvénic regimes.

The antisymmetric kink instability discussed here can be
used to model the instability of various types of jets in the solar
atmosphere. Here, we consider the stability of spicules as seen
in obtained results. It must be mentioned, however, that the real
conditions of the solar atmosphere (magnetic field structure, jet
density structure, etc.) are much more complicated when com-
pared with the simplified setup of this paper. Therefore, the
results show only general properties of jet instability, which can
significantly vary for different types of jets and solar atmospheric
conditions.

5.1. Comparison with solar observations: instability of
spicules

Spicules are chromospheric plasma jets flowing upwards into the
lower corona, therefore they are almost 100 times denser and
cooler than the corona. Spicules have been known for long time,
as they have frequently been observed at the solar limb (Beckers
1968). A typical lifetime of the spicules is 5−15 min, and the
upward velocity is ∼20−25 km s−1. We note that the disc coun-
terparts of spicules are called mottles (Tsiropoula et al. 2012).
Recent Hinode observations with high spatial and temporal res-
olutions revealed spicules with different properties known as
type II spicules (De Pontieu et al. 2007). The type II spicules
have much shorter lifetimes of 10−150 s and higher upward

velocities of 50−150 km s−1 compared to classic spicules (now
known as type I spicules). The disc counterparts of type II
spicules are known as rapid blueshifted and rapid redshifted
excursions (RBEs/RREs) and were first observed by the Swedish
Solar Telescope (Rouppe van der Voort et al. 2009). The gen-
eration mechanism of spicules is poorly understood. Classical
spicules can be easily formed due to rebound shocks after photo-
spheric pulses (Hollweg 1982; Murawski & Zaqarashvili 2010),
but type II spicules are more difficult to excite. Recent mod-
els of emerging bipolar regions resulting in magnetic reconnec-
tion (Moore et al. 2011; Sterling et al. 2015, 2020) or in a twist
release by ambipolar diffusion (Martínez-Sykora et al. 2017)
seem to capture essential features of type II spicules, though
more work is required to this regard. Density and temperature
are similar in both types of spicules, therefore the short life-
time of type II spicules can be caused either by their rapid dif-
fusion or by rapid heating, which may lead to their disappear-
ance in chromospheric spectral lines. The appearance of spicules
in transition region spectral lines show that type II spicules
are rapidly heated (Pereira et al. 2014), though the heating
mechanism is not yet completely clear. Ion-neutral collisions,
Kelvin-Helmholtz instability, or both together might lead to
the rapid heating (Zaqarashvili et al. 2015; Kuridze et al. 2016;
Martínez-Sykora et al. 2017; Antolin et al. 2018), but this is not
yet fully established. Another possibility is that the spicules are
quickly destroyed by an instability process. Zaqarashvili (2020)
suggested that the dynamic kink instability of a homogeneous jet
may be responsible for the disappearance of type II spicules at
some height of expanding magnetic flux tubes. Here, we exam-
ine the effects of transverse flow inhomogeneity on dynamic kink
instability in both types of spicules separately.

5.1.1. Kink instability in type I spicules

The diameter of type I spicules varies from 300 to 1100 km
(Pasachoff et al. 2009), therefore we take a mean value of
800 km, which leads to d = 400 km for the half-width. Plasma
flow may reach to 20−30 km s−1 so we take V0z = 30 km s−1 for
the velocity at the jet axis (Beckers 1968; Pasachoff et al. 2009).
We also assume for the external Alfvén speed in low corona as
200 km s−1 and for the density ratio of spicules and lower corona
as 100. Left panels of Fig. 7 shows the solutions of the disper-
sion relation (15) in the parameters of type I spicules. It is seen
that the jets is almost fully stabilised (red lines). Only negligi-
ble instability region around kzd = 4.5 was found. On the other
hand, hydrodynamic jets are unstable in the region of kzd < 2.4,
which may correspond to significantly inclined spicules. Right
panels show the periods and the growth times of unstable har-
monics vs. wavelength around the instability region. The period
of unstable harmonics is around 23−25 s, while the growth time
is 400−1000 s. The growth time of unstable harmonics is com-
parable to the lifetime of type I spicules, which is 5−15 min
(Beckers 1968). Hence, though the instability is weak in type
I spicules, it may still destroy the structure over the observed
lifetime.

5.1.2. Kink instability in type II spicules

Type II spicules are generally thinner than type I spicules with
a diameter of <200 km (De Pontieu et al. 2007), therefore we
take d = 100 km for the half-width. Plasma flow may reach
to 50−150 km s−1 so we take V0z = 100 km s−1 for the veloc-
ity at the jet axis. We assume the same external Alfvén speed
and the density ratio as for the case of the type I spicules,
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Fig. 7. Solutions of antisymmetric (kink) mode (Eq. (15)) in the conditions of type I spicules: ρ0/ρe = 100, d = 400 km, V0 = 30 km s−1. Left
panels: real (upper) and the imaginary (lower) parts of frequencies, which are normalised by kzV0z. Blue lines show the purely hydrodynamic case
(i.e. VA = 0). Red lines show the case when the external Alfvén speed is VA = 200 km s−1. Right panels: periods (upper) and growth times (lower)
of unstable harmonics vs. wavelength in the interval of kzd = 4.4−4.7. Here α = 1 and ky,V0y = 0.
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Fig. 8. Solutions of the antisymmetric (kink) mode (Eq. (15)) in type II spicule conditions: ρ0/ρe = 100, d = 100 km, V0 = 100 km s−1. Left
panels: real (upper) and the imaginary (lower) parts of frequencies, which are normalised by kzV0z. Blue lines show the purely hydrodynamic case
(i.e. VA = 0). Red lines show the case when the external Alfvén speed is VA = 200 km s−1. Right panels: periods and growth times of unstable
harmonics vs. wavelength in the interval of kzd = 0.5−2.5. Here, α = 1 and ky,V0y = 0.

that is, an Alfvén speed of 200 km s−1 and density ratio of
spicules and lower corona equal to 100. The left panels of
Fig. 8 show the solutions of the dispersion relation (15) in these
parameters. One can see that the jets become unstable for the
wave number of kzd = 0.5−2.5, which corresponds to the wave-
lengths of 250−1400 km. Hydrodynamic jets are again unsta-
ble in the region of kzd < 2.4. Right panels show the peri-
ods and the growth times of unstable harmonics vs. wavelength
in the instability region. The period of unstable harmonics is
around 5−30 s, while the growth time is 5−60 s. The growth time
of unstable harmonics is comparable to the lifetime of type II
spicules, which is 10−150 s (De Pontieu et al. 2007). Hence, the
instability may destroy the type II spicules over the observed
lifetime.

5.1.3. Ion-neutral collision effects on the kink instability in
spicules

Chromospheric plasma is partially ionised, therefore the colli-
sion between ions and neutral atoms may have an influence on
the kink instability in spicules. Since our analysis concerns only
fully ionised plasma, it is important to estimate the effects of

ion-neutral collisions. Kuridze et al. (2016) estimated the heat-
ing time due to ion-neutral collision effects to be

theat ∼
βδinD2

V2
A

1 − ξn

ξ2
n

, (20)

where β = 8πp/B2
z is the plasma beta, D is the spatial scale of

perturbations, δin is the ion-neutral collision frequency, ξn is the
neutral-to-total particle density ratio. Let us estimate the heating
time for type II spicules, taking the spatial scale of unstable har-
monics as D = 400 km (see previous sub-section). We take the
following values for other parameters: δin = 103 Hz, β = 0.1,
VA = 100 km s−1, and ξn = 0, 5 (Kuridze et al. 2016). In this
case, the heating time is estimated as 3.2 × 103 s, which is two
orders of magnitude longer than the growth time of kink insta-
bility. Therefore, ion-neutral collision effects are negligible at
the initial stage of instability. However, when the kink instability
is fully developed, the energy is transferred to smaller scales,
which in turn decreases the heating time. Therefore, an ion-
neutral collision effect may only have an influence on plasma
dynamics in the later stages of kink instability. This is not within
the scope of the present paper and will be studied in the near
future.
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Fig. 9. MHD simulation of a magnetised triangular jet in type II spicule conditions. The half-width of the jet is 100 km and the total length of the
simulated jet is about 7 mm. The initial transverse perturbation has an amplitude of ∼10 km s−1 (corresponding to 10% of the flow speed at the jet
centre) and a spatial scale of around 600 km. We show the mass density ρ (left panels), the flow velocity Vz (middle panels), and the z-component
of the magnetic field Bz (right panels) at consecutive snapshots, each 15 s apart (upper panels correspond to the initial set up). A pronounced kink
develops around 30 s after initial perturbation and turns into an instability after ≈45 s. Corresponding movies can be found online.

5.2. Numerical simulations

The analytical model considered here is obviously simplified.
The solutions are linear, therefore we only model the initial lin-
ear stage of the instability, while it is also important to see the
full development of the instability (i.e. what happens to the jets
later on). Additionally, the absence of a magnetic field inside
the jet in the considered analytical model is not a good approxi-
mation for spicules. Therefore, numerical simulations should be
invoked to test the analytical results.

In this section, we present results of 2D numerical simula-
tions obtained with the code PLUTO (e.g. Mignone et al. 2007),
which accompanies our discussion in Sect. 4 on antisymmetric
kink modes in a uniform background magnetic field. The code is
employed to solve the ideal MHD equations in conjunction with
the thermal ideal equation of state for closure. For the flux com-
putation of an approximate Riemann solver (i.e. Harten, Lax, van
Leer (HLL)) was used. A more detailed and systematic numer-
ical analysis is underway and will be discussed in a separate
paper.

Contrarily to the analytical solution (with no magnetic field
inside the jet), here we consider the homogeneous magnetic field
inside and outside the jet with the same strength of Bz = 10 G.
For our setup, we chose typical parameters applicable to solar
type II spicules. The jet’s half-width was set to d = 100 km and
its speed at the axis to V0z = 100 km s−1. The inner temperature is
set to 104 K. The mass density ρ0 was chosen such that a pressure
equilibrium at the jet boundary is maintained, thus it depends on
the external mass density of ρe = 5 × 10−14 g cm−3 and external
temperature of Te = 4 × 105 K, which means ρ0/ρe = 40. We

used a cartesian grid with cell sizes of ∆x = ∆z = 2 km, cor-
responding to 1/50 of the jet’s half-width, to easily capture the
turbulent evolution of the plasma flow in the non-linear regime.
The initial temporal resolution was set to 5 × 10−4 s and con-
secutive time steps are determined by a maximum CFL num-
ber of 0.2. Neumann zero-gradient outflow boundary conditions
were applied on the right as well as on the top and on bottom
sides, while an open inflow condition is specified on the left
boundary.

We show that the jet becomes unstable with regard to kink
modes when subjected to transverse antisymmetric perturbations
as discussed in Sect. 4. The perturbation amplitude of the trans-
verse velocity was set to ∼10% of the flow speed V0z and the per-
turbation FWHM2

√
2 ln 2σ of the initial Gaussian pulse g(z) =

(
√

2πσ)−1 exp{−1/2 · [(z − µ)/σ]2}, centred around the location
µ (where the initial pulse is seeded), is related to typical sizes
of granulation cells. We scanned the dispersion relation, Fig. 3,
for various wave numbers and indeed found a strong instability
in the depicted regime. The simulation presented below is based
on an initial perturbation with kzd = 1 (i.e. to the spatial scale of
628 km).

Figure 9 shows the dynamics of the plasma density, longi-
tudinal components of velocity, and magnetic field in the jet
and surroundings at different times. A significant displacement
of the jet axis is already seen 15 s following the initial per-
turbation (second line from the top). After 45 s (bottom line),
the transverse displacement already shows a non-linear char-
acter, therefore the growth time of perturbations can be esti-
mated around 30 s, which is comparable to the analytical growth
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time (Fig. 8). Around 45 s after the initial perturbation, the jet
is almost destroyed locally. Hence, less than 1 min after the ini-
tial excitation, the transverse velocity pulse had transformed into
a fully developed local instability. If one initially excites a har-
monic wave instead of local pulse, then the instability develops
along the whole wave train, which collapses the jet (numerical
simulations will be presented in a separate paper). This agrees
with the lifetime of type II spicules fairly, therefore the spicules
could be destroyed by the kink instability.

The propagation speed of the excited kink pulse is estimated
as ≈54 km s−1 as measured in the inertial frame. The instability
keeps growing until the jet is finally destroyed. The simulations
show that the development of the instability critically depends on
the flow speed of the jet as expected: at a lower V0z of 30 km s−1,
the initially generated kink wave forms only a narrow, low ampli-
tude pulse that is propagating with the flow without tearing down
the underlying jet.

6. Conclusions

The stability of triangular jets sandwiched between two mag-
netic tubes (or slabs) in the solar atmosphere was studied. A
dispersion equation governing the antisymmetric kink perturba-
tions was obtained, which was solved analytically and numer-
ically for different cases of Alfvén Mach number, MA, and the
ratio of internal and external densities, ρ0/ρe. We show that trian-
gular jets are unstable to the dynamic kink instability depending
on the Alfvén Mach number and the density ratio. For exam-
ple, jets with ρ0/ρe = 1 are unstable in the super-Alfvénic regime
(M−1

A < 1), while denser jets with ρ0/ρe = 10 are unstable also
in the sub-Alfvénic regime (M−1

A < 2.5). The jets flowing with
an angle to the external magnetic field become unstable well
below the thresholds. The results were applied to the conditions
of type I and type II spicules in the solar atmosphere. The insta-
bility growth time in the conditions of type I spicules is esti-
mated as 6−15 min depending on the perturbation wavelength,
which corresponds to the lifetime of the spicules. The instabil-
ity growth time in the conditions of type II spicules is estimated
as 5−60 s depending on the perturbation wavelength, which also
corresponds to the lifetime of these spicules. Numerical simu-
lations of fully non-linear MHD equations show that the ini-
tial kink pulse leads to the local breakdown of the jet in less
than a minute. Consequently, the kink instability may lead to the
observed short lifetime of type II spicules. However, the simple
consideration of the jet and environment in this paper does not
fully correspond to the real conditions in the solar atmosphere.
Therefore, more work is required in the future. A more detailed
numerical simulation of the process is currently underway.
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