Simulations of chromospheric heating: progress and challenges

S. Danilovic Institute for Solar Physics - Stockholm University

Thanks to: Adur Pastor Yabar, Jaime de la Cruz Rodriquez, Joao da Silva Santos, Jorrit Leenarts, Matthias Rempel and Damien Przybylski

Observed chromosphere

Dunn Solar Telescope, IBIS

Observed chromosphere

Highly dynamic - Pietarila et al. 2009; Reardon et al. 2011, Rutten & Rouppe van der Voort 2017, De Pontieu et al. 2007, 2012; McIntosh et al. 2008, Kuridze et al. 2012, 215,216, Sekse et al. 2014, Pereira et al. 2016, Samanta et al. 2019, Jafarzadeh et al. 2017, Gafeira et al. 2017

Duration ~ 7 min Cadence ~ 2 s Dopplegrams +-36 km/s

Observed chromosphere

Highly dynamic - Pietarila et al. 2009; Reardon et al. 2011, Rutten & Rouppe van der Voort 2017, De Pontieu et al. 2007, 2012; McIntosh et al. 2008, Kuridze et al. 2012, 215,216, Sekse et al. 2014, Pereira et al. 2016, Samanta et al. 2019, Jafarzadeh et al. 2017, Gafeira et al. 2017

Duration ~ 5 min Cadence ~ 10 s @ -50 km/s

Swedish 1-m Solar Telescope Ha

Leenaarts et al. 2015

Leenaarts et al. 2015

The configuration of the magnetic field is an important factor in controlling the energy losses.

Withbroe & Noyes 1977

Withbroe & Noyes 1977

Some of the differences:

• domain size (24 × 24 × 16.8 Mm vs 40 × 40 × 22 Mm) • mean unsigned field (30 G vs 180 G) • field configuration (bipolar vs complex)

Some of the differences:

domain size (24 × 24 × 16.8 Mm vs 40 × 40 × 22 Mm)
mean unsigned field (30 G vs 180 G)
field configuration (bipolar vs complex)

Synthetic chromosphere

Features reproduced: long fibrils, short and long dynamic fibrils, surges, Rob's events, RREs and RBEs, spicule.

Duration ~ 5 min Cadence ~ 10 s

Synthetic chromosphere

Features reproduced: long fibrils, short and long dynamic fibrils, surges, Rob's events, RREs and RBEs, spicule.

Duration ~ 5 min Cadence ~ 10 s @ -60 km/s

Heating

$\frac{\partial e}{\partial t} + \vec{\nabla} \cdot (e\vec{v}) = -P(\nabla \cdot \vec{v}) - \nabla \cdot \vec{F_c} - \nabla \cdot \vec{F_r} + Qres + Qvis$ compression conduction radiation magnetism viscosity

Heating

Przybylski et al. submitted

Heating

$$\frac{\partial e}{\partial t} + \vec{\nabla} \cdot (e\vec{v}) = -P(\nabla \cdot \vec{v}) - \nabla \cdot \vec{l}$$
compression condu

Canonical values by Withbroe & Noyes 1977 QS: 4 kW/m2 AR: 20 kW/m2

 $\vec{F_c} - \nabla \cdot \vec{F_r} + Qres + Qvis$

radiation uction

magnetism viscosity

 $\int (Qres + Qvis) \times CF_{H_{\alpha}}dz$

Heating - can be constrained by multiple observables

- Heating cannot be observed but losses can
- Retrieved with inversion at 100 km resolution show large variation in space and time ~ 0-160 kW/m2

Check out:

Poster Session 4.2 - Jaime de la Cruz Rodriquez - method description Poster Session 8.5 - Rahul Yadav - application on a flare data (Ca H, Ca K, Ca IR, Mg h, Mg k) Poster Session 10.2 - Joao da Silva Santos - application on an emerging region data (Alma, Ca IR)

$$\int_{\log m_c > -5}^{\log m_c < -4.5} (Qres + Qvis) dz$$

Alma 3 mm

Diaz-Baso et al., 2021

- realistic magnetic configuration
- small scales relevant as large
 - resolve relevant drivers
 - reproduce observed Poynting flux

Moll et al. 2012

Vortex flow seems to be relevant:

- Observations Bonet et al. 2008, Requerey et al. 2017,2018, Wedemeyer & Rouppe van der Voort 2009, Morton et al. 2013, Shetye et al. 2019
- Simulations Moll et al. 2011, Kitiashvili et al. 2011, Shelyag et al. 2013, Wedemeyer & Steiner 2014, Yadav et al. 2020, 2021, Battaglia et al. 2021

Battaglia et al. 2021

- realistic magnetic configuration
- small scales relevant as large

- realistic magnetic configuration
- small scales relevant as large
- emergence

Leenaarts et al. 2018

AlA 171
DEM IgT<5

$$dBz/dt$$
 $f = 0.2 min$
 $f = 0.2 min$

Change atmospheric properties at: \supseteq

- Shocks
- Contact regions (spicule)
- Emergence
- Reconnection sites
- Poynting flux with height

- emergence
- non-equilibrium ionisation
- ion-neutrals effects

Chromospheric modelling - what do we need?

To take:

Chromospheric modelling - what do we need?

- realistic magnetic configuration
- small scales relevant as large
- emergence
- non-equilibrium ionisation
- ion-neutrals effects

1-to-1 modelling + multi-line/continua observations

