Babcock-Leighton solar dynamo models including the observed meridional circulation and surface flux loss

> Simon Cloutier Robert Cameron Laurent Gizon

ESPM-16 September 6th 2021

Open questions

Does the flux-transport dynamo using the observed meridional flow reproduce:

- 1. The 11 year cycle period
- 2. The equatorward propagation of sunspots
- 3. The emergence of sunspots within latitudes of $\pm ~{\sim}40^{\circ}$ around the equator

Large-scale flows

MC from Gizon et al. 2020 averaged over cycles 23 and 24 and symmetrized across the equator

Toroidal flux loss timescale

Cameron & Schüssler 2020:

Toroidal flux loss due to flux emergence has timescale ~ 12 years

 \Rightarrow removes most of the toroidal flux produced by the Ω -effect \Rightarrow likely has a strong impact on the operation of the dynamo

Dynamo model equations

$$\frac{\partial A}{\partial t} = -\frac{(\boldsymbol{u}_{\rm p} + \boldsymbol{\gamma})}{r\sin\theta} \cdot \nabla(r\sin\theta A) + \eta \left(\nabla^2 - \frac{1}{r^2\sin\theta^2}\right)A + S$$

$$\begin{aligned} \frac{\partial B}{\partial t} &= -r\sin\theta(\boldsymbol{u}_{\rm p} + \boldsymbol{\gamma}) \cdot \nabla\left(\frac{B}{r\sin\theta}\right) + r\sin\theta(\nabla \times [A\hat{\boldsymbol{e}}_{\phi}]) \cdot \nabla\Omega \\ &+ \eta\left(\nabla^2 - \frac{1}{r^2\sin\theta^2}\right)B - \frac{1}{r}\frac{\partial(rB)}{\partial r}\frac{\partial\eta}{\partial r} - B\nabla \cdot (\boldsymbol{u}_{\rm p} + \boldsymbol{\gamma}) - B \end{aligned}$$

Details in S. Cloutier, and R. H. Cameron, A Babcock-Leighton dynamo model of the Sun incorporating toroidal flux loss and the helioseismically-inferred meridional flow, to be submitted

Simon CloutierRobert CameronLaurent Gizon

Babcock-Leighton source and loss terms

From Leighton 1969 and Cameron & Schüssler 2020:

$$S(r,\theta,t) = f_{S}(r)N(n)\sin^{n}\theta\sin\delta\frac{R_{\odot}^{-1}b(\theta,t)}{\tau_{0}} \qquad \qquad b(\theta,t) = \int_{0.7R_{\odot}}^{R_{\odot}} B(r,\theta,t)rdr$$
$$L(r,\theta,t) = f_{L}(r)N(n)\sin^{n}\theta\cos\delta\frac{B(r,\theta,t)}{\tau_{0}} \qquad \qquad \sin\delta = \frac{1}{2}\cos\theta$$
$$n = 12, 1$$

See Karak & Cameron 2016 for source term with b

Strong evidence the dynamo could be located in the bulk of the CZ (Wright & Drake 2016, Brown et al. 2010, Nelson et al. 2013, 2014, Cameron & Schüssler 2015, Schunker et al. 2020)

Simon CloutierRobert CameronLaurent Gizon

Results (n = 12 case - emergence latitudes constrained)

Toroidal flux 90 1.0 0.75 45 0.5 0.25 λ [°] 0 0.0 ~ -0.25 -0.5 -45 -0.75 -1.0 90 1.0 0.75 45 0.5 0.25 ∑ [°] 0 0.0 -0.25 -0.5 -45 -0.75 -1.0 -90 10 20 30 50 0 40 Time [yrs]

pumping depth: $0.80 R_{\odot}$ pumping velocity: 11.2 m/s diffusivity: $30 \text{ km}^2/\text{s}$ source/loss timescale: $\tau_0 = 27.8 \text{ yrs}$ toroidal flux loss timescale: $\tau_{L} = 24.0 \text{ yrs}$

 $3_r(R_{\odot})$

Simon CloutierRobert CameronLaurent Gizon

Results (n = 1 case - emergence latitudes unconstrained)

pumping depth: $0.80 R_{\odot}$ pumping velocity: 17.7 m/s diffusivity: $10 \text{ km}^2/\text{s}$ source/loss timescale: $\tau_0 = 12.9 \text{ yrs}$ toroidal flux loss timescale: $\tau_L = 17.5 \text{ yrs}$

Simon CloutierRobert CameronLaurent Gizon

Simon CloutierRobert CameronLaurent Gizon Babcock-Leighton solar dynamo models including the observed meridional circulation and surface flux loss *n* = 12

n = 1

Simon CloutierRobert CameronLaurent Gizon

Conclusion

Helioseismically-inferred meridional flow from Gizon et al. 2020 allows for relatively solar-like butterfly diagrams

Self-consistent toroidal flux loss can't be ignored

Deep pumping can explain why sunspots are confined to low latitudes

 \Rightarrow possibly solves the high polar field problem of FTD models

Pumping should store the toroidal flux below $\sim 0.8R_{\odot}$

 \Rightarrow + low diffusivities: MC likely has key role in setting the dynamo period