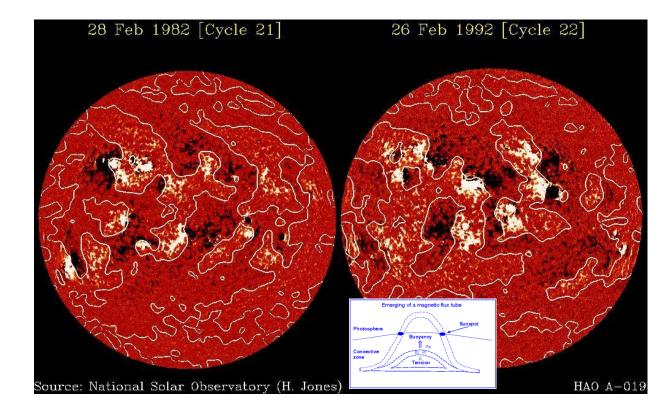
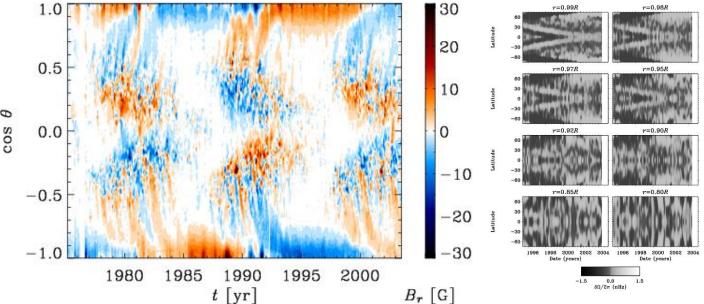

Advances in mean-field dynamo theory

Axel Brandenburg (Nordita, Stockholm)

What	How	What next?
What is mean-field dynamo theory?	Large-scale field, 11 yr cycle Azimuthally averaged field	OK for the Sun, not other stars
Global simulations & mean-fields	TFM (test-field method) NSSL (near surface shear layer) Deep weakly subadiabatic Sunspots, link to the dynamo	New simulation setups Targeted simulations Detailed study of idealizations
Importance of magnetic helicity	Emerging twist in ARs Magnetic helicity in solar wind	Too much? Wrong sign? → Combined simulations





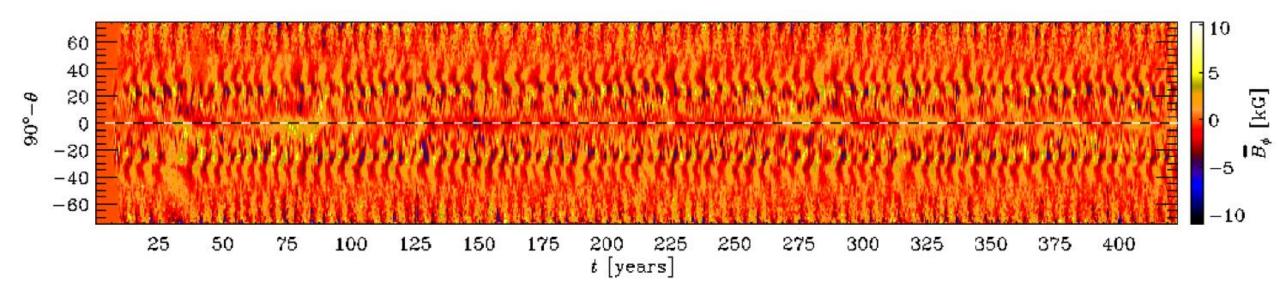
Why mean-field theory

- Spatio-temporal order
 - East-west orientation
 Reversed 10 years later
- Captured by azimuthal averaging

 Clear pattern in radial field
 And in zonal flows
- To understand reasons
 - Display averaged results
 Other stars with m=1 fields
 Azimuthal average not useful
- Not just averaged equations! \circ i.e., not just $\alpha \Omega$ dynamos

Global simulations

What	How	What next?
What is mean-field dynamo theory?	Large-scale field, 11 yr cycle	OK for the Sun, not other stars
Global simulations & mean-fields	NSSL (near surface shear layer) TFM (test-field method) Deep weakly subadiabatic Sunspots, link to the dynamo	New simulation setups Targetted simulations Detailed study of idealizations
Importance of magnetic helicity	Emerging twist in ARs Magnetic helicity in solar wind	Too much? Wrong sign? → Combined simulations

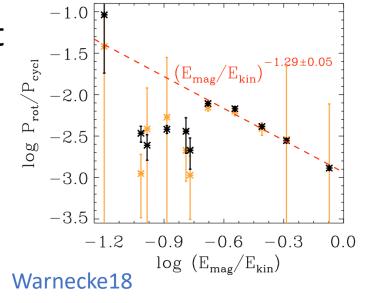

- Should eventually reproduce the Sun (& stars!)

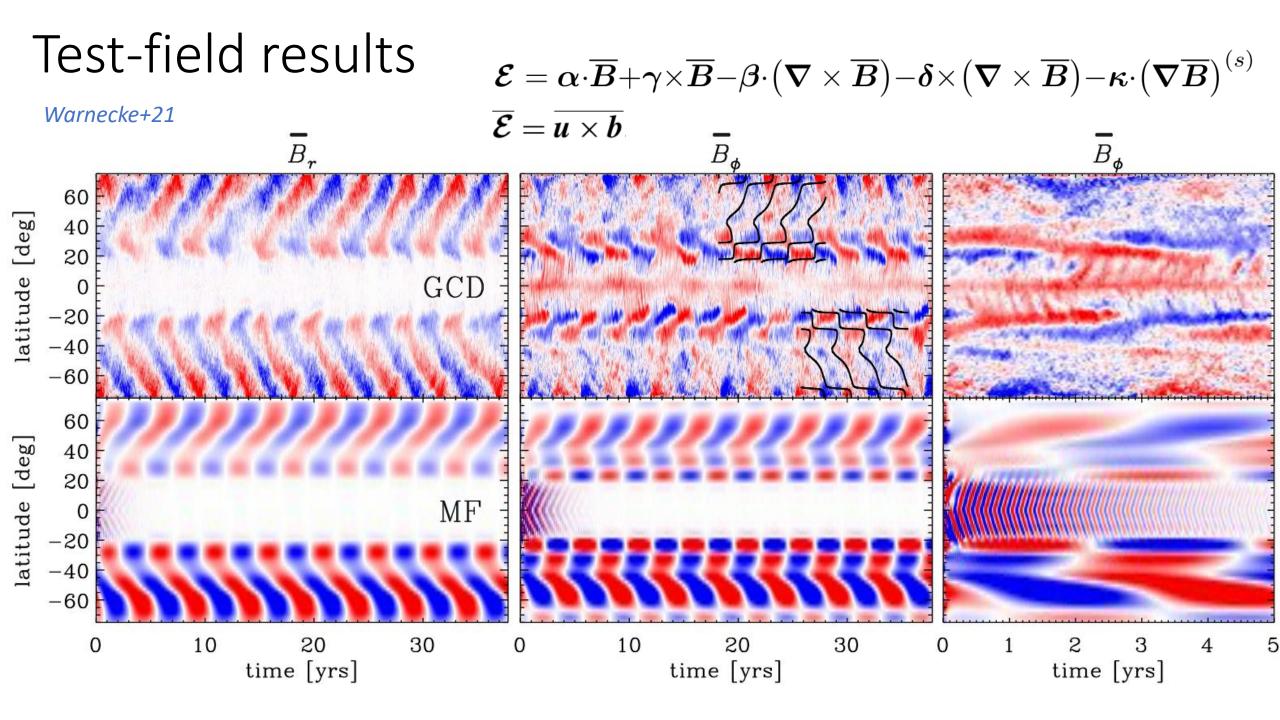
 Even if the truth is in Babcock-Leighton
 Currently, there are still systematic differences
- Should already now reproduce features predicted by models

 If model are stripped of certain complexities (surface layers)
 Can those features be captured by averaged equations?

Global simulations

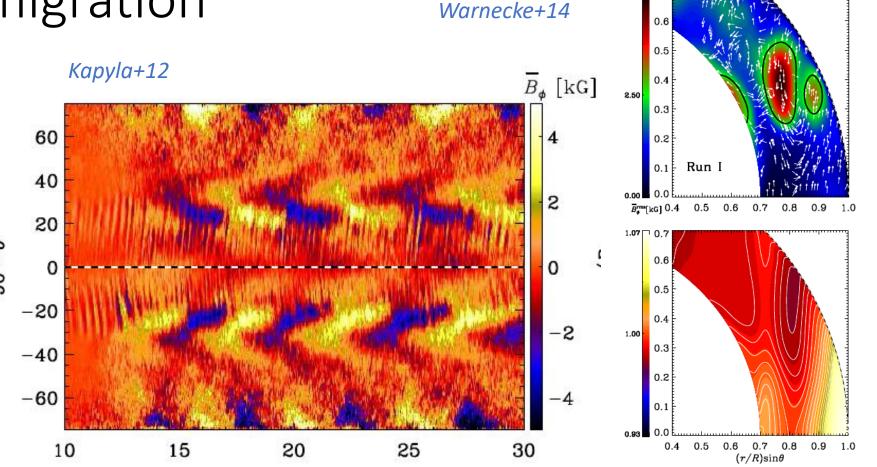
M Kapyla + 16: multiple dynamo modes




- Cyclic variability common, even multiple cycles, but

 No clear equatorward migration (but equatorial belts)
 If migration: associated with shear layers
- Predictions from global simulations recovered

 Parker-Yoshimura rule (Warnecke+14)
 Detailed mean field coefficients (Warnecke+21)


Equatorward migration

- Historically most important

 Requires α > 0, and
 dΩ/dr <0
 But: helioseismology

 Alternatives

 Overshoot dynamo
 Content of the second s
 - Surface shear layer
 - Meridional circulation

- Caused here by negative radial shear at mid-latitudes
 - $\,\circ\,$ Exactly as predicted by Parker-Yoshimura: α dΩ/dr <0
 - $\circ\,$ Not seen in helioseismology
 - Meridional circulation: multiple cylindrical shells (also not seen in seismology)

Global simulations: shortcomings:

- NSSL (near-surface shear layer) not resolved

 Tremendous difference in time scales: 5 min vs 12 days
 Length scales: 300 km vs 60 Mm
- Convection instability not by local Schwarzschild criterion

 But stirring from above → drives Deardorff flux (Brandenburg16)
 No giant cells expected (→ all global simulations flawed)
 Stability depends on *local* opacity law

Opacity κ **k** Polytropic index *n*

 $\kappa = \kappa_0 \rho^a T^b \qquad n = \frac{3-b}{1+a}$

Barekat+Brandenburg14

Gradient flux (Bohm-Vitense 1953) Deardorff flux (Deardorff 1968)

Set	а	b	n	Schwarzschild
А	1	-3.5	3.25	stable
В	1	0	1.5	marginally stable
С	1	1	1	unstable
D	1	5	-1	ultra unstable
Е	-1	3	0/0	undefined

$$F_{\rm G} = -\frac{1}{3} \tau_{\rm red} u_{\rm rms}^2 \,\overline{\rho} \,\overline{T} \,\nabla \overline{S},$$
$$F_{\rm D} = -\tau_{\rm red} \,\overline{s^2} \,\boldsymbol{g} \,\overline{\rho} \,\overline{T}/c_P$$

Brandenburg16

Another missing piece: surface appearence

m 0

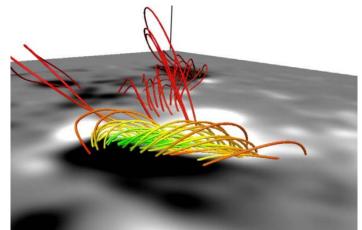
 $^{-2}$

- Stratified MHD turbulence produces spots
 - Even without convection
 Can form + disappear in days
 Strong scale separation required
 Best in forced turbulence
 Unclear how important for the Sun
- Buoyant rise picture questionable

 Expansion during ascent
 Slender tubes not seen in simulations
 Anticipated role of tachocline?
- Link between dynamo & butterfly

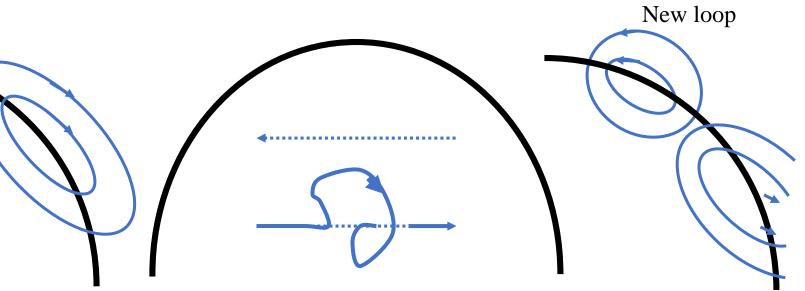
 Must be integral part of solar dynamo
 Surface appearance possibly shallow

1.00 0.00 0.10 0.50 0.20 0.30 0.00 0.40 0.50 -0.500.60 0.70 0.80 B./B. B_{\star}/B_{ee} $t/\tau_{\rm td} = 0.20$ t/τ_{td} = 2.00

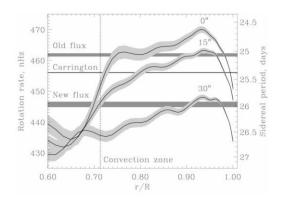

Brandenburg+13

Magnetic helicity

What	How	What next?
What is mean-field dynamo theory?	Large-scale field, 11 yr cycle	OK for the Sun, not other stars
Global simulations & mean-fields	NSSL (near surface shear layer) TFM (test-field method) Deep weakly subadiabatic Sunspots, link to the dynamo	New simulation setups Targetted simulations Detailed study of idealizations
Importance of magnetic helicity	Emerging twist in ARs Magnetic helicity in solar wind	Too much? Wrong sign? → Combined simulations


- Emergent twist seems very strong • Where from?
- Theoretically expected from dynamos

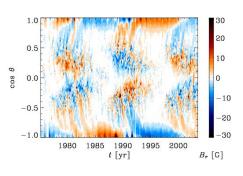
 But maybe not so much
 Alleviates catastrophic quenching



Vemareddy 2019 (NLFFF for AR12673)

Kinetic helicity in the solar dynamo

Differential rotation (faster inside)



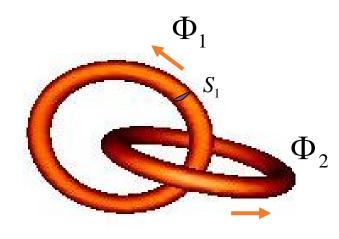
Cyclonic convection; Buoyant flux tubes

 $\rightarrow \alpha$ -effect

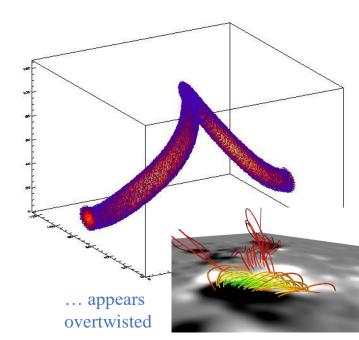
Equatorward migration

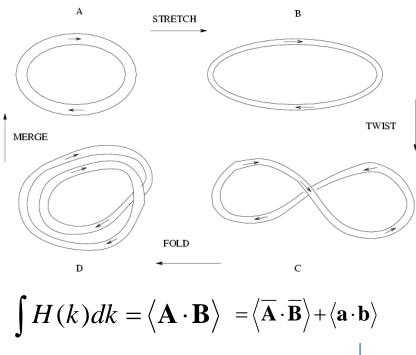
Crafoord prize in Astronomy 2020

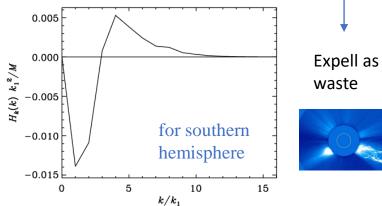
"for pioneering and fundamental studies of the solar wind and magnetic fields from stellar to galactic scales"


Kinetic helicity

 <ω.u>, ω=curlu
 Alpha effect in dynamo theory
 <uxb>=α


Magnetic helicity conservation


$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \frac{1}{2} \mathbf{B}^2 \right\rangle = -\left\langle \mathbf{u} \cdot \left(\mathbf{J} \times \mathbf{B} \right) \right\rangle - \eta \left\langle \mathbf{J}^2 \right\rangle \qquad J \propto \eta^{-1/2} \propto k B \propto k$$


$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\langle \mathbf{A}\cdot\mathbf{B}\rangle = -\langle \mathbf{u}\cdot(\mathbf{B}\times\mathbf{B})\rangle - \eta\langle \mathbf{J}\cdot\mathbf{B}\rangle \to \eta\eta^{-1/2} = \eta^{1/2} \to 0$$

 $H = \pm 2\Phi_1\Phi_2$

Ulysses in situ measurements -> wrong sign

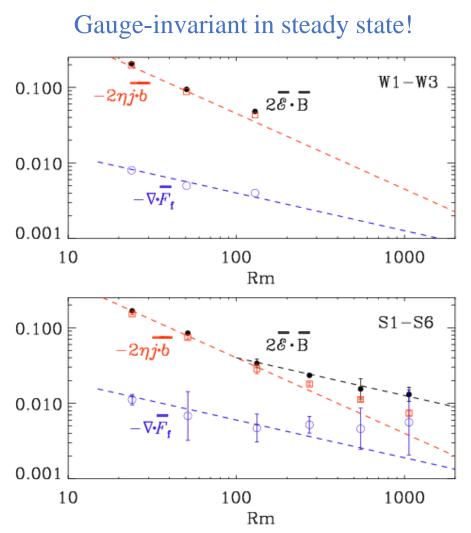
Taylor hypothesis: \mathbf{u}_1 \mathbf{u}_2 Chunk of turbulence passing by space craft $R = R_0 - u_R t$ $H_{\rm M}^{\rm 1D}(k_R) = 4 \operatorname{Im}(\hat{B}_T \hat{B}_N^{\star}) / k_R.$ 4πR² kH_N δk [nT² AU² $\mathbf{2}$ +ve in North 1.0000 $2\mu_{\rm O}E_{\rm M}$ and kH_{M} $\sim k^{-5/3}$ 0.1000 0.0100 $2\mu_0 E_M$ 0.0010 -ve in South 0.0001 -90-60-303060 90 1000 10 100 $k \left[\mathrm{AU}^{-1} \right]$ latitude [degr]

• Broad *k* bins

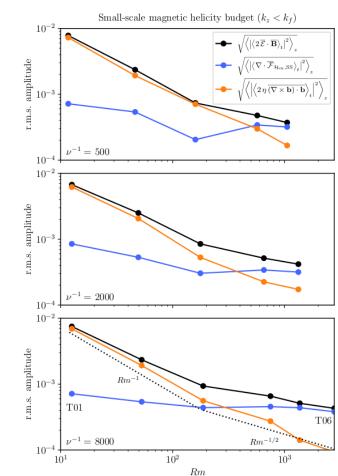
- Southern latitude with opposite sign
- Small/large distances
- Positive *H* at large *k*
- Break point with distance to larger k

1500 AU⁻¹ ~ 0.01 Mm⁻¹ 1 AU⁻¹ ~ 1 μHz

Change of sign: (i) in latitude, (ii) in scale


Magnetic helicity flux in simulations

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \overline{\mathbf{A}} \cdot \overline{\mathbf{B}} \right\rangle = +2 \left\langle \overline{\mathbf{E}} \cdot \overline{\mathbf{B}} \right\rangle - 2\eta \left\langle \overline{\mathbf{J}} \cdot \overline{\mathbf{B}} \right\rangle - \nabla \cdot \boldsymbol{\mathcal{F}}_{\mathrm{m}}$$


$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \mathbf{a} \cdot \mathbf{b} \rangle = -2 \langle \overline{\mathbf{\epsilon}} \cdot \overline{\mathbf{B}} \rangle - 2\eta \langle \mathbf{j} \cdot \mathbf{b} \rangle - \nabla \cdot \mathbf{\mathcal{F}}_{\mathrm{f}}$$

- EMF and resistive terms still dominant
 - Fluxes import at large Rm
 ~ 1000
 - \circ Rm based on $k_{\rm f}$ \circ Smaller by 2π
- Here for ``galactic'' wind

 Not yet done for CMEs
 Need 10⁴⁶ Mx²/cycle
 Also through equator

Rincon21: equatorial fluxes

Del Sordo, Guerrero, Brandenburg (2013, MNRAS 429, 1686)

Conclusions

- Sun's spatio-temporal order remarkable, even by comparison with other stars (e.g., from Wilson sample; Baliunas+95)
- Global simulations not there yet (NSSL, deep subadiabatic layer)
- Inconsistencies/puzzles regarding magnetic helicity

What	How	What next?
What is mean-field dynamo theory?	Large-scale field, 11 yr cycle	OK for the Sun, not other stars
Global simulations & mean-fields	NSSL (near surface shear layer) TFM (test-field method) Deep weakly subadiabatic Sunspots, link to the dynamo	New simulation setups Targetted simulations Detailed study of idealizations
Importance of magnetic helicity	Emerging twist in ARs Magnetic helicity in solar wind	Too much? Wrong sign? → Combined simulations