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Figure 9. Comparison of the vertically emergent intensity in the Mg ii k line core between 1D (top row) and 3D (bottom row) computations, performed assuming
CRD. The columns show the intensity for various spectral features indicated above the top panels. The top and bottom panels in each column have the same brightness
scale so the 1D and 3D intensity can be compared directly.
(A color version of this figure is available in the online journal.)

Figure 10. Joint probability density functions of the vertically emergent intensity computed in 3D and in 1D. Left: k2V ; middle: k3; right: k2R . The red line is the line
I1D = I3D.
(A color version of this figure is available in the online journal.)

11. EFFECT OF PARTIAL REDISTRIBUTION

We now turn our attention to the effect of PRD on the
emergent line profiles. The Mg ii h&k lines are strongly affected
by the effect of PRD. Owing to the low particle density in
the chromosphere, the average time between collisions is large

compared to the lifetime of an Mg ii ion in the upper levels of
the lines. Therefore, the frequency of the absorbed and emitted
photon in a scattering process are correlated and the assumption
of CRD is invalid. We demonstrate this effect in Figure 11,
which displays a comparison of vertically emergent line profiles
computed with RH in PRD and CRD for two different columns
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J. P. Bjørgen and J. Leenaarts: Numerical non-LTE 3D radiative transfer using a multigrid method

Fig. 10. Intensity of the Ca ii K line core computed from atmosphere Model 1 (left) and Model 2 (right) at µz = 1. The intensity is shown as the
brightness temperature Trad computed from B⌫(Trad) = I⌫.
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Fig. 11. Convergence behavior for MALI and multigrid for three-level Ca ii (left-hand panel) and hydrogen atom (right-hand panel) for atmosphere
Model 1. The computation was performed with three grids, full-weighting restriction, and trilinear interpolation. For three-level Ca ii we used
⌫1 = 2, ⌫2 = 2, ⌫3 = 32 and for H i we used ⌫0 = 15,⌫1 = 2, ⌫2 = 25, ⌫3 = 32.

– three-grid iteration converges faster than four-grid iteration;
– the coarse-grid iterations can converge to a negative solution.

This is not a problem for isolated grid points, but if extended
regions have negative populations, one should increase the
number of post-smoothing iterations;

– each atom and atmosphere requires some testing to find
the optimal number of pre-smoothings and post-smoothings.
Our findings in Table 1 can be used as a starting point.

Since each problem is unique, other atmospheres and atoms
could require di↵erent approaches. Therefore, the multigrid
method should be implemented into radiative transfer codes in
a modular way so that methods can be easily changed.

We did not obtain the high convergence rate (as measured in
spectral radius of the multigrid iteration) as reported in Fabiani
Bendicho et al. (1997). There are two reasons for this. First,
these authors used a static smooth 2D with a weak horizontal

temperature inhomogeneity and no vertical temperature gradi-
ent, while we are using moving atmospheres with very large
gradients in all atmospheric parameters. Second, they use Gauss-
Seidel (GS) iterations, while we use Jacobi iteration in Multi3D.
The smoothing properties and the convergence speed of GS it-
erations are superior to Jacobi iteration. Unfortunately, no MPI-
parallelization scheme exists for GS iteration that scales well to
thousands of computing cores, and we are forced to use Jacobi
iteration. The lower convergence speed per iteration for Jacobi
iteration can fortunately be o↵set by increasing the number of
computing cores, but, ideally, one should develop an e�cient
parallel GS iteration scheme. A similar conclusion was reached
by Štěpán & Trujillo Bueno (2013).

So far, we have only tested our multigrid method using com-
plete frequency redistribution. Because partial frequency redis-
tribution (PRD) can increase the computing time in non-LTE
problems by more than an order of magnitude, the obvious next
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Figure 7. Comparison of Hα line-core formation between full 3D radiative transfer (left-hand column) and treatment of each column in the snapshot as a plane-parallel
atmosphere (right-hand column). First row: vertically emergent intensity. Second row: average formation height. Third row: angle-averaged radiation field at optical
depth unity.
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Figure 7. Comparison of Hα line-core formation between full 3D radiative transfer (left-hand column) and treatment of each column in the snapshot as a plane-parallel
atmosphere (right-hand column). First row: vertically emergent intensity. Second row: average formation height. Third row: angle-averaged radiation field at optical
depth unity.
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Hα

3D effects can be important in the cores 
of strong lines, 1.5D (column-by-column) 
radiative transfer is not enough.

Full 3D NLTE calculations very expensive. 
Many iterations, hundreds of thousands 
of CPU-hours.
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SunnyNet

Input is LTE populations, output NLTE populations

Goal is to learn final spectra from simulations, but SunnyNet 
learns mapping from LTE to NLTE populations of a given 
model atom. This allows later computation of any spectral 
line in the model, for any viewing angle (in CRD).

We consider not just 1 to 1 pixel mapping, but input is 3D, 
so we surround the pixel of interest by neighbouring 
columns, to account for inclined rays. Window size can be 
adjusted.

“True” result is taken from a run of Multi3D
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SunnyNet 3x3 Multi3D
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• Excellent results based on simple network structure

• GPU-based, PyTorch, speeds up 3D NLTE by 105

• Open source, available at https://github.com/bruce-chappell/SunnyNet 
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