

²⁶ Fe

Fe

TOWARDS A COMPREHENSIVE VIEW OF PLANET FORMATION: The role of the host star's metallicity.

J. MALDONADO INAF – Osservatorio astronomico di Palermo jesus.maldonado@inaf.it

Congresso Nazionale di Astrochimica e Astrobiologia (proto-)planetaria, October 23, 2019

THE PLANET METALLICITY CORRELATION

A WELL KNOWN RELATIONSHIP?

Correlation between high [Fe/H] and the presence of gas-giant planets

Interpreted in the framework of coreaccretion models

Santos et al. (2005)

More complex than initially thought:

More complex than initially thought:

Controversial in giant stars with planets

TOWARDS AN UNIFIED VIEW

CONNECTING STELLAR AND SUBSTELLAR DOMAINS

Need of an unified view: Maldonado et al. 2019, A&A 624

All possible outcomes:
From debris discs to massive brown dwarfs
All possible host's stars:
From M dwarfs to early-F, from main-sequence to giants
Spectroscopic homogeneous analysis:

Except for M dwarfs

Туре	Number	Notes
Substellar objects (total)	345	95 multiple systems
Brown dwarfs	59	3 systems with 2 BDs
$(10 M_{\rm Jup} < M_{\rm C} \sin i < 70 M_{\rm Jup})$		5 systems BD + planet
Low-mass planets	78	34 hot ($a < 0.1$ au)
$(M_{\rm C}\sin i < 30M_{\oplus})$		44 cool ($a > 0.1$ au)
Gas-giant planets	208	34 hot (<i>a</i> < 0.1 au)
$(M_{\rm C}\sin i>30M_{\oplus})$		$174 \operatorname{cool} (a > 0.1 \operatorname{au})$
Debris disc	99	32 debris disc + substellar object

Architecture of the planetary systems

[Fe/H] cumulative distribution function of different subsamples

- Stars with gas giant planets: show high metallicity values
- Rest of samples: metallicity distributions consistent with those of stars without substellar companions

[Fe/H] cumulative frequencies

Evidence for a non universal planet formation mechanism

• Tendency towards lower metallicity of the host star as the mass of the substellar companion increases

More massive planets tend to orbit around more massive stars

Consistency with recent works

Mass at which substellar companions no longer preferentially orbit metal-rich stars between 4 and 10 $$M_{Jup}$$

No evidence for different formation mechanisms of planets with masses above and below 4 $\rm M_{\rm Jup}$

High-mass planets can be formed through different channels depending on the (disc) stellar mass

Consistency with period-eccentricity distributions

More massive substellar companions show larger periods and eccentricities

As we move towards more massive substellar companions:

- their host stars show a wider (towards negative values) range of metallicities and higher stellar masses
- planets (or BDs) show longer periods and eccentricities

The higher the mass of the substellar companion, the higher the probability that it is formed by a non-metallicitydependent formation mechanism

Planet metallicity correlation in context I

Tendency towards a wider rage of metilicities continues in the low-mass stellar range Continuity between stellar and substellar companions

Tendency in the low-mass planets domain? Low-metallicities \rightarrow longer timescales to form a core \rightarrow only small planets and planetesimals

Planet metallicity correlation in context II

SUMMARY

TAKE AWAY MESSAGES

SUMMARY

Continuity between the formation of substellar and stellar companions driven by the metallicity of the host star: (Maldonado et al. 2019, A&A 624)

- Planetesimals and low-mass planets: trends with metallicity might be need confirmation, still may be formed by the core-accretion method
- Hot-Jupiters: the core-accretion formation mechanism achieves its maximum efficiency for planets with masses between 0.2 and 2 M_{Jup}
- Massive substellar objects and low-mass binary companions: the range of the star's metallicity increases towards lower values, both kinds of object tend to share similar formation mechanisms