Enhanced nitrogen fractionation at core scales: The high-mass star-forming region IRAS 05358+3543

Congresso Nazionale di Astrochimica e Astrobiologia (proto-) planetaria

Laura Colzi 21st October 2019

F. Fontani, P. Caselli, V. M. Rivilla, S. Leurini, L. Bizzocchi, L. Testi, M. Beltrán, Á. Sánchez-Monge, C. Ceccarelli, P. Hily-Blant, G. Quaia

Outline of the talk

N-fractionation in the ISM \rightarrow MOTIVATION

A large sample of sources:

The Galactocentric trend and its relation with GCE models

N-fractionation at high-angular resolution: the first interferometric observations of the ¹⁵N-isotopologues of N₂H⁺

Isotopic Fractionation

"The process that distributes less abundant stable isotopes of an element in molecular species"

Image credit: Wide-field Infrared Survey Explorer (WISE 2011-2014)

Isotopic Fractionation

"The process that distributes less abundant stable isotopes of an element in molecular species"

N-Fractionation

"The process that distributes less abundant stable isotope of nitrogen in molecular species"

21st October 2019, Laura Colzi

Image credit: Wide-field Infrared Survey Explorer (WISE 2011-2014)

N-fractionation Introduction

What are <u>¹⁴N/¹⁵N</u> ratios measured in <u>different</u> <u>phases of star formation</u>, until now?

21st October 2019, Laura Colzi

Image credit: Bill Saxton, NRAO/AUI/NSF

STARLESS CORE PRE/PROTOSTELLAR OBJECTS

¹⁴ N/ ¹⁵ N	molecule	Reference
330±150	N ₂ H ⁺	Daniel et al. (2016)
350 - 850	NH ₃	Gerin et al. (2009)
334±50	NH ₃	Lis et al. (2010)
270±20	CN, HCN, HNC, HC_3N and N_2H^+	Kahane et al. (2018)
140-360	HCN and HNC	Hily-Blant et al. (2013a)
160-290	HCN and HNC	Wamplfler et al. (2014)
1000±200	N ₂ H ⁺	Bizzocchi et al. (2013)
630-770	N ₂ H ⁺	Redaelli et al. (2018)

21st October 2019, Laura Colzi

PROTOPLANETARY DISCS

Guzmán et al. (2017), from HCN ✓ AS 209: **156**±**71**; ✓ LkCa 15: **83**±**32**; ✓ V4046 Sgr: **115**±**35**; ✓ MWC 480: **123**±**45**; ✓ HD 163296: **142**±**59**. Average value: **111**±**19**.

Hily-Blant et al. (2017), from CN
 ✓ TW Hya: 323±30

PROTOPLANETARY DISCS

Guzmán et al. (2017), from HCN ✓ AS 209: **156**±**71**; ✓ LkCa 15: **83**±**32**; ✓ V4046 Sgr: **115**±**35**; ✓ MWC 480: **123**±**45**; ✓ HD 163296: **142**±**59**. Average value: **111**±**19**.

✓ Hily-Blant et al. (2017), from CN
 ✓ TW Hya: 323±30

ARE PROTOPLANETARY DISKS THE MISSING LINK?...

21st October 2019, Laura Colzi

High-mass star-forming regions

(Adande & Ziurys 2012, Fontani et al., 2015, Zeng et al., 2017, Colzi et al., 2018a, 2018b)

...likely the environment in which the Sun was born

(e.g. Adams10)

Supernovae explosions are required to explain hints found in meteorites

²⁶Mg is found in meteorites → dauther species of ²⁶Al (with a half life of 0.72 Myr) Only a time <1 Myr could have elapsed between the production of ²⁶Al and his incorporation into the early Solar system material

21st October 2019, Laura Colzi

IRAM 30m telescope (Sierra Nevada, Spain)

Credit: Laura Colzi (21/05/2019)

87 High-mass star-forming regions: 27 (Fontani et al. 2011, 2015) + 60 (Mininni et al. in prep.)

- MEASURE **N-FRACTIONATION** IN NITRILE BEARING SPECIES **HNC** AND **HCN**;
- COMPARE WITH VALUES IN PRISTINE SOLAR SYSTEM MATERIALS;
- SEARCH A GALACTOCENTRIC TREND $\rightarrow D_{GC}$ from 2 kpc up to 12 kpc

HN¹³C(1-0) at 87.1 GHz;
H¹⁵NC(1-0) at 88.0 GHz;

• H¹⁵NC(1-0) at 88.9 GHz;

- H¹³CN(1-0) at 86.3 GHz;
- HC¹⁵N(1-0) at 86.1 GHz.

 MADCUBA (Martín et al. 2019)
 → Local Thermodynamic Equilibrium (LTE) fit of the spectra;
 → T_{ex} from CH₃CN(5-4) (LTE) • HN¹³C(1-0) at 87.1 GHz;

• H¹⁵NC(1-0) at 88.9 GHz;

• H¹³CN(1-0) at 86.3 GHz;

• HC¹⁵N(1-0) at 86.1 GHz.

 MADCUBA (Martín et al. 2019)
 → Local Thermodynamic Equilibrium (LTE) fit of the spectra;
 → T_{ex} from CH₃CN(5-4) (LTE) DETECTIONS HN¹³C \rightarrow H¹³CN \rightarrow H¹⁵NC \rightarrow HC¹⁵N \rightarrow

OPTICALLY THIN!!

- HN¹³C(1-0) at 87.1 GHz;
- H¹⁵NC(1-0) at 88.9 GHz;

- H¹³CN(1-0) at 86.3 GHz;
- HC¹⁵N(1-0) at 86.1 GHz.

MADCUBA (Martín et al. 2019)
→ Local Thermodynamic

- Equilibrium (LTE) fit of the
- spectra; $\rightarrow T_{ex}$ from CH₃CN(5-4) (LTE)

DETECTIONS HN¹³C \rightarrow H¹³CN \rightarrow H¹⁵NC \rightarrow HC¹⁵N \rightarrow

 $N(HNC) = N(HN^{13}C) \frac{\frac{12C}{13C}}{\frac{12C}{13C}}$ $N(HCN) = N(H^{13}CN) \frac{\frac{12C}{13C}}{\frac{12C}{13C}}$

 $^{12}C/^{13}C = (6.01 \pm 1.19) Dgc(kpc) + (12.28 \pm 9.33)$

Related papers: Colzi, L. et al. (2018 a,b)

1ilam et al. (2005)

Distribution of ¹⁴N/¹⁵N ratios

- In the merged total sample of 87 sources:
- ¹⁴N/¹⁵N: 185-780 for HNC, 115-1305 for HCN;
- Distribution of $\frac{14}{N}$ $\frac{15}{N}$ peak in the bin <u>310-350</u>.

¹⁴N/¹⁵N as good indicator of nucleosynthesis

¹⁴N: primary product

- <u>Primary</u> production from fastrotating low-metallicity <u>massive stars</u>
- <u>Primary</u> production in the base of the convective envelope of <u>AGB</u> (intermediate-mass)
- <u>Secondary</u> production through CN cycles in <u>MS stars</u> and in the Hburning shells of <u>red giants</u>

¹⁵N: secondary product

 <u>Secondary</u> production from hot CNO cycle that occurs in <u>novae outbursts</u>

Nova Cygni 1992

What is the Galactocentric trend?

NEW LOCAL ISM VALUE (8.4 kpc) HNC: 370±50 HCN: 380±50

NEW LOCAL ISM VALUE (8.4 kpc) HNC: 370±50 HCN: 380±50

Galactic chemical evolution (GCE, Romano et al., 2017) model predicts:

Inear trend up to 8 kpc: introduction of <u>NOVAE OUTBURST</u>

→ flattening trend above 8-10 kpc: caused by <u>assumed stellar yields</u>

NEW LOCAL ISM VALUE (8.4 kpc) HNC: 370±50 HCN: 380±50

Galactic chemical evolution (GCE, Romano et al., 2017) model predicts:

Inear trend up to 8 kpc: introduction of <u>NOVAE OUTBURST</u>

→ flattening trend above 8-10 kpc: caused by <u>assumed stellar yields</u>

Romano et al. (2019) updated the stellar yields for massive stars taking into account different intial rotational velocities (Limongi and Chieffi 2018)

Romano et al. (2019) updated the stellar yields for massive stars taking into account different intial rotational velocities (Limongi and Chieffi 2018)

NOW THE GCE MODEL EXACTLY REPRODUCE THE TREND WE FOUND

IRAS 05358+3543

Distance 1.8 kpc

Image resolution ~3" -> ~0.03 pc CORE SIZE

Auriga molecular cloud complex

IRAM NOEMA

IRAS 05358+3543

Distance 1.8 kpc

Image resolution ~3" -> ~0.03 pc CORE SIZE

Auriga molecular cloud complex

IRAM NOEMA

IRAS 05358+3543

Distance 1.8 kpc

Image resolution ~3" -> ~0.03 pc CORE SIZE

IRAM NOEMA

Auriga molecular cloud complex

The source with the most intense ¹⁵NNH⁺/N¹⁵NH⁺(1-0) Already known structure: cores+envelope

N₂H⁺ (1-0) (NOEMA + 30m merged) - THE EMISSION ARISES FROM <u>3 CORES</u>

N₂H⁺ (1-0) (NOEMA + 30m merged) - THE EMISSION ARISES FROM <u>3 CORES</u>

¹⁵NNH⁺ and N¹⁵NH⁺(1-0) (NOEMA + 30m merged)

0.004

0.002

-0.002

COMPACT EMISSION WITH RESPECT TO N₂H⁺ DIFFERENT EMISSION OF THE TWO ISOTOPOLOGUES

N₂H⁺ (1-0) (NOEMA + 30m merged) - THE EMISSION ARISES FROM <u>3 CORES</u>

<u>Geometrical center displaced of ~2-3"</u> with respect to the continuum sources

¹⁵NNH⁺ and N¹⁵NH⁺(1-0) (NOEMA + 30m merged)

0.004

0.002

-0.002

COMPACT EMISSION WITH RESPECT TO N₂H⁺ DIFFERENT EMISSION OF THE TWO

ISOTOPOLOGUES

WHY THE DISPLACEMENT?

- <u>N₂H⁺ is probably destroyed by CO</u>, once it desorbs from ice mantles (e.g. Busquet+2011);
- mm1 and mm3: the heating of the protostar may have caused the desorption of CO;
- mm4: chemically less evolved and starless.

¹⁴N/¹⁵N RATIOS

Source	T _{ex} (K)	$\frac{N_2H^+}{15NNH^+}$	Source	T _{ex} (K)	$\frac{N_2H^+}{N^{15}NH^+}$
P1a	20 30 40	200±34 186±31 178±29	P1b	20 30 40	200±25 217±29 212±27
	50	$1/3\pm 2/$		50	222 ± 30
P2a	20 30 40 50	180 ± 18 171 ± 17 156 ± 16 154 ± 15	P2b	20 30 40 50	129 ± 17 120 ± 15 108 ± 13 113 ± 14
P3a	20 30 40 50	120±18 114±17 111±16 109±15	P3b	20 30 40 50	100 ± 15 100 ± 16 109 ± 17 100 ± 15
P4a	20 30 40 50	117±14 112±14 120±15 108±12	P4b	20 30 40 50	187±33 182±31 185±33 185±32

Towards mm3 and mm4 there is a clear evidence of ¹⁵N-enrichment at core scales with respect to the region previously resolved with the IRAM 30m (Fontani+2015)

Towards A differences between ¹⁵NNH⁺ and N¹⁵NH⁺ → to be investigated! (see e.g., Roueff et al. 2015, Wirström & Charnley 2018)

Source	T _{ex} (K)	$\frac{N_2H^+}{15NNH^+}$	$\frac{\mathrm{N_2H^+}}{\mathrm{N^{15}NH^+}}$	(1-0)	
D1	20	≥245	≥204		S
	30	≥231	≥188	33 40 00	
	40	≥242	≥200	8 /mm1)	J
	50	≥250	≥204	7750	
D2	20	336±96	≥154		
	30	327 ± 91	≥148		
	40	316 ± 87	≥143		hm
	50	292±77	≥140		
D3	20	≥243	≥340	3594513011	~
	30	≥250	≥321	33 43 30	
	40	≥261	≥353		
	50	≥250	≥333	5 ⁿ 39 ^m 14 ^s	
				RA	

AND THE DIFFUSE **REGIONS?**

Towards the N₂H⁺ diffuse emission regions we have found ¹⁴N/¹⁵N >200.

/beam

Another evidence of ¹⁵N-enhancement towards the cores (0.03 pc)

Furuya & Aikawa (2018)

ENVELOPE

- Isotope selective photodissociation of N₂ (Heays et al. 2014)
- ¹⁵N locked on grains
 - ¹⁴N/¹⁵N ¹⁴N¹⁴N/¹⁴N¹⁵N

Furuya & Aikawa (2018)

ENVELOPE

- Isotope selective photodissociation of N₂ (Heays et al. 2014)
- ¹⁵N locked on grains
 - ¹⁴N/¹⁵N ¹⁴N¹⁴N/¹⁴N¹⁵N

CORE

Photodissociation inefficient → Initial ¹⁴N/¹⁵N

Furuya & Aikawa (2018)

ENVELOPE

- Isotope selective photodissociation of N₂ (Heays et al. 2014)
- ¹⁵N locked on grains

¹⁴N/¹⁵N ¹⁴N¹⁴N/¹⁴N¹⁵N

CORE

Photodissociation inefficient → Initial ¹⁴N/¹⁵N

NEW NOEMA + IRAM 30m OBSERVATIONS -> STAY TUNED!!

Conclusions

New LOCAL ¹⁴N/¹⁵N ISM VALUE 375 \pm 60 \rightarrow closer to PSN value

Galactic chemical evolution model reproduces Galactocentric trends and absolute values

First evidence of enhanced N-fractionation in N₂H⁺ towards a massive star-forming region

¹⁴N/¹⁵N ratios towards the more diffuse regions of the cluster (>200) higher than those derived in the cores (100-200)

Enhanced nitrogen fractionation at core scales: The high-mass star-forming region IRAS 05358+3543

Congresso Nazionale di Astrochimica e Astrobiologia (proto-) planetaria

Laura Colzi 21st October 2019

F. Fontani, P. Caselli, V. M. Rivilla, S. Leurini, L. Bizzocchi, L. Testi, M. Beltrán, Á. Sánchez-Monge, C. Ceccarelli, P. Hily-Blant, G. Quaia

