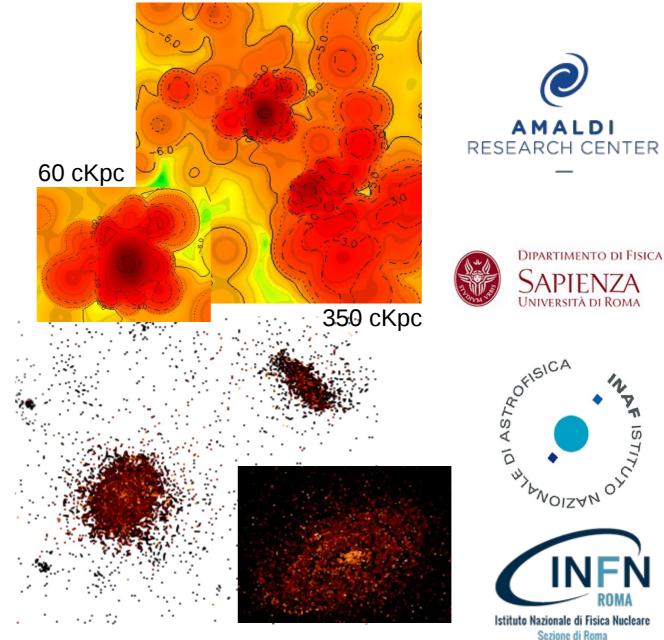

The assembly of high-z dusty galaxies

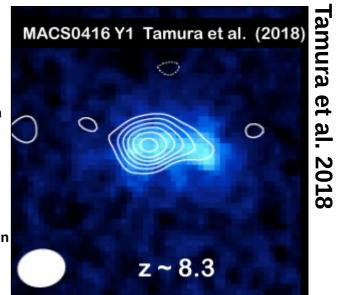


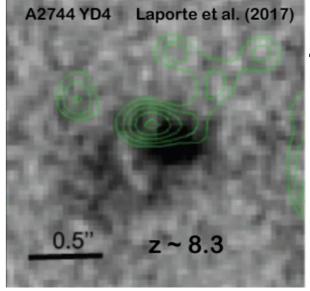
700 cKpc Luca Graziani

In collaboration with:

R. Schneider (Un. La Sapienza)
M. Ginolfi (Un. Ginevra)
L. Hunt (INAF, Arcetri)
U. Maio (AIP)

M. Glatzle, B. Ciardi (MPG)


Extremely Big Eyes on the Early Universe, 9-13 September 2019, Roma, Italy


Signals from High redshift (z > 6) <u>dusty</u> galaxies

- Watson: $z \sim 7.5$, $M_d \sim 10^7 M_{sun}$, SFR~10 M_{sun}/yr , $M_* \sim 2 10^9 M_{sun}$
- Laporte: $z \sim 8.3$, $M_d \sim 6 \ 10^6 M_{sun}$, SFR~ 20 M_{sun} /yr, $M_* \sim 2 \ 10^9 M_{sun}$
- Tamura: $z \sim 8.3$, $M_d \sim 4 \ 10^6 M_{sun}$, SFR~13 M_{sun}/yr , $M_* \sim 5 \ 10^9 M_{sun}$
- Tamura: $z \sim 9.11$, $M_d < 5 \ 10^5 M_{sun}$, SFR~13 M_{sun}/yr , $M_* \sim 10^9 M_{sun}$

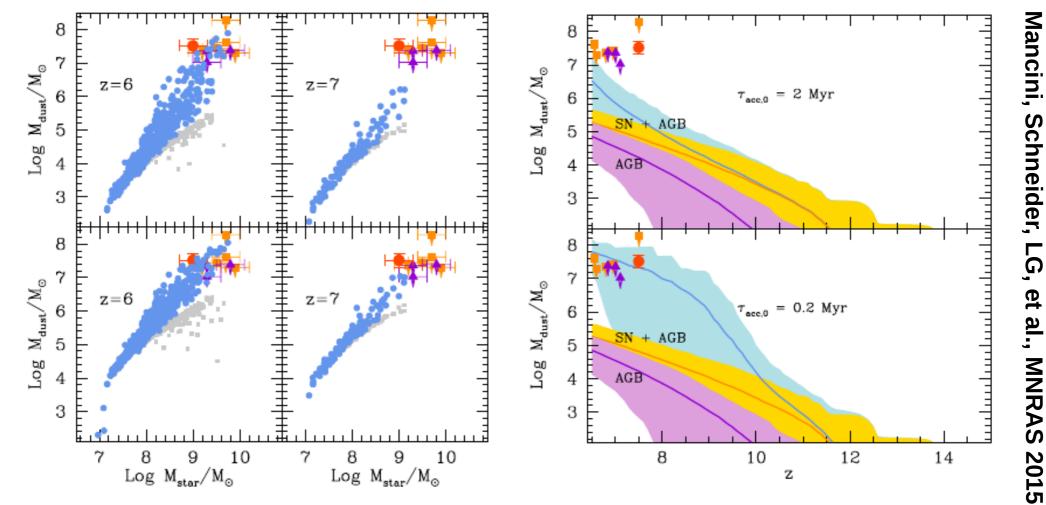
- Does the dust evolution follow the stellar mass assembly?
- Effect of different assembly history?
- Dust evolution as tracer of ISM evolution?
- Cold/ Warm/ Hot?

Interplay between feedback processes required to

understand these galaxies as they assemble

Modelling *dust formation*, *evolution* → Understand <u>extinction</u>

- Dust is an old topic as the Milky Way ISM is enriched by dust $D_c \sim 1/150$
- Models / codes for dust extinction: absorption/scattering exist and reproduce the Milky Way extinction curve
- But.... Dust formation still unconstrained especially in low-metallicity stars
 - → <u>Effective</u> stellar yields (Y_d) for metals and dust are required for both AGB stars and SNe (Marassi et al., MNRAS 2019)
 - Galactic environments in which dust can grow are NOT clear
 - \rightarrow What is the time scale for dust grains to grow? (t_{qq})
 - \rightarrow Gas conditions? n_{gas} , T_{g} , Z_{g} ? Cold/Hot phase (x_{c})?


(Hirashita et al., MNRAS 2014)

- Processes destroying dust grains have specific time scales
 - → Destruction by stellar shocks (t_d) (de Bennassuti et al., MNRAS 2014)
 - → Grain sputtering in hot gas (t_{sp}) (Tsai & Mathews, ApJ, 1995)

$$\dot{M}_{\rm d} = -\mathrm{SFR}(t) \mathcal{D}_{\rm c} + \frac{x_{\rm c} M_{\rm d}}{\tau_{\rm gg}} - (1 - x_{\rm c}) M_{\rm d} \left(\frac{1}{\tau_{\rm d}} + \frac{3}{\tau_{\rm sp}}\right) + \dot{Y}_{\rm d}(t).$$

Simulating a high-z dusty Galaxy with semi-numerical models

Establish the right mass of dust by coupling simulations (Maio 2010) and SAM (Valiante 2007).

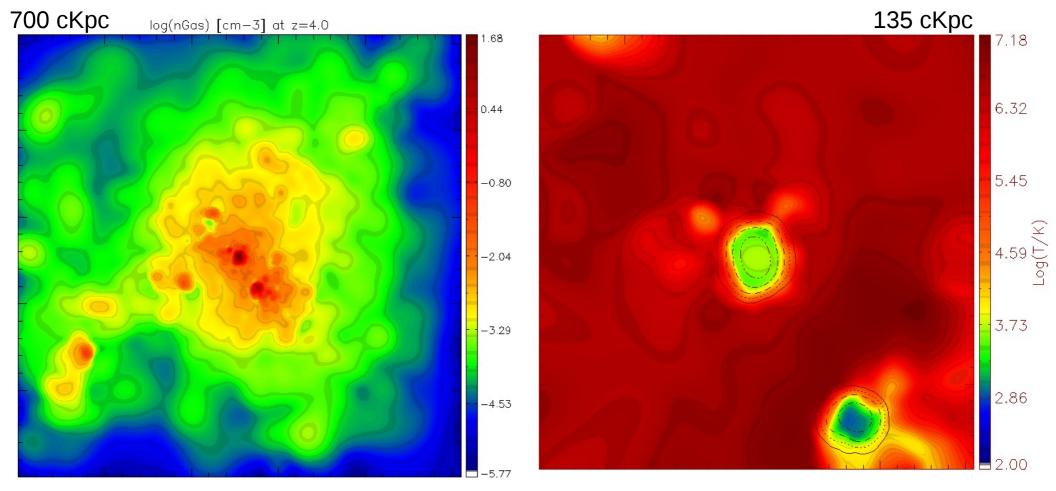
Observed galaxies from **Schaerer** et al. (2015, squares), **Maiolino** et al. (2015, triangles) and **Watson** et al.(2015, circle point). **Simulated galaxies** with dust production and

Evolution (blue points). Dust production only by SNI and AGB stars (gray points).

Strong assumptions on the evolution Timescales (mainly for grain growth) are required by SAM to match the observed Mass of dust. What is missing here? Assembly effect? Wrong Yields? Statistics?

$$\dot{M}_{\rm d} = -\mathrm{SFR}(t) \mathcal{D}_{\rm c} + \frac{x_{\rm c} M_{\rm d}}{\tau_{\rm gg}} - (1 - x_{\rm c}) M_{\rm d} \left(\frac{1}{\tau_{\rm d}} + \frac{3}{\tau_{\rm sp}}\right) + \dot{Y}_{\rm d}(t).$$

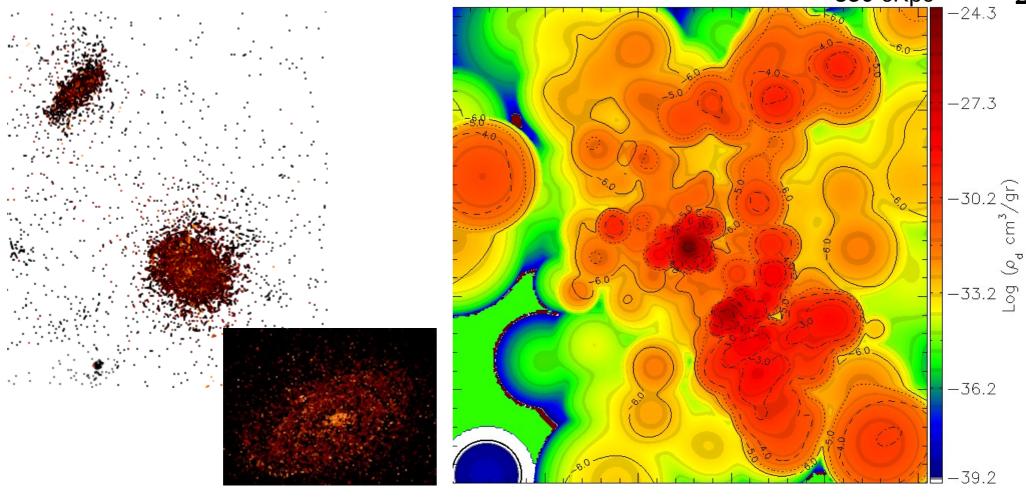
Dust production and evolution simulated consistently with atomic metals in multi-phase SPH, star-forming particles.


- **DETAILED STELLAR EVOLUTION**: (Tornatore 2007): **SNIa**, **SNII**, **AGB**.
 - \rightarrow Separate Stellar populations Pop III/Pop II can be followed and IMF assigned.
 - \rightarrow Precise stellar ages t, metallicity Z, in stellar particles (Padovani&Matteucci, 1993).
- METAL/DUST ENRICHMENT: Tornatore 2007 + dust: POP III, SNII,AGB

 → Yields for both POPIII and POPII stars (Bianchi&Schneider 2007, Marassi et al., 2019).
- **DUST ASTRATION + GRAIN GROWTH + DUST DESTRUCTION + GRAIN SPUTTERING** Followed in each star-forming SPH particle.
 - \rightarrow time scales can be modelled as largely environment dependent
 - $\mathbf{x} T_{d}$ requires assumptions
 - **x** mass resolution still a limit in cosmological simulations

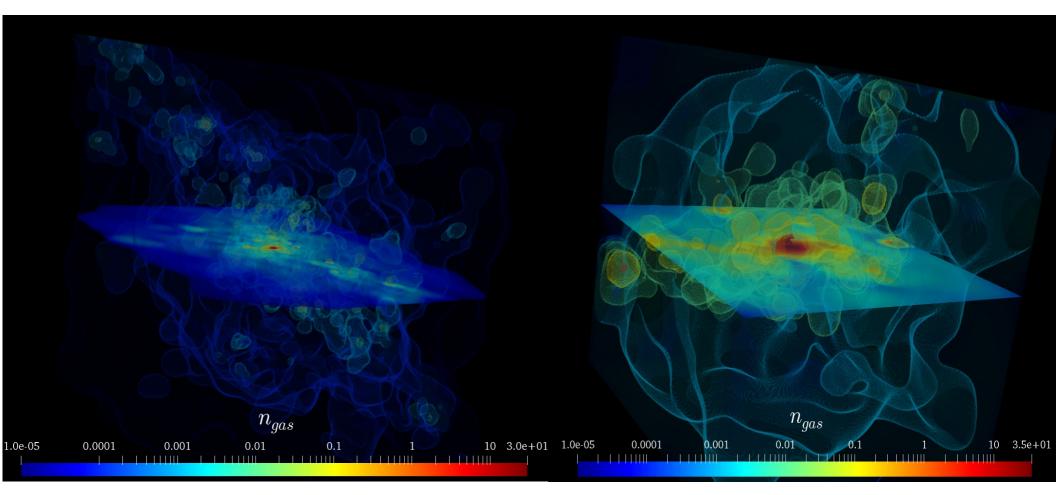
These processes are environment dependent !

$$\dot{M}_{\rm d} = -\mathrm{SFR}(t) \mathcal{D}_{\rm c} + \frac{x_{\rm c} M_{\rm d}}{\tau_{\rm gg}} - (1 - x_{\rm c}) M_{\rm d} \left(\frac{1}{\tau_{\rm d}} + \frac{3}{\tau_{\rm sp}}\right) + \dot{Y}_{\rm d}(t).$$

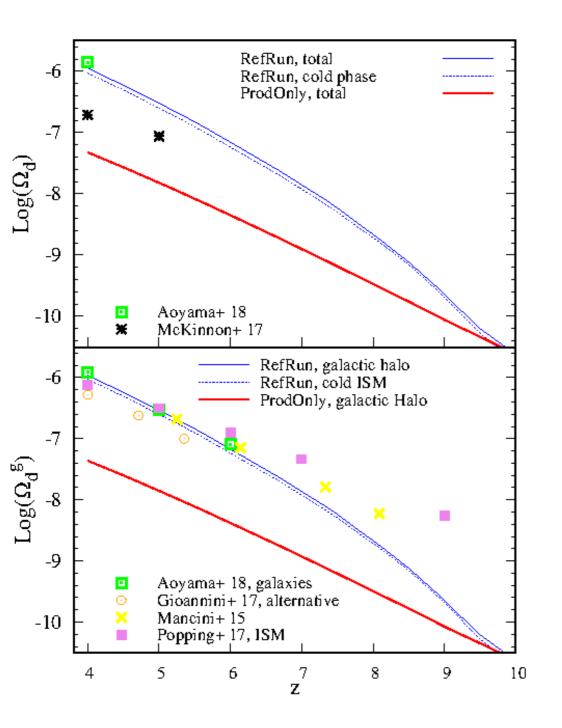

Dust production and evolution simulated consistently with atomic metals in multi-phase SPH, star-forming particles.

Environment dependence & Spreading by winds

$$\dot{M}_{\rm d} = -\mathrm{SFR}(t) \mathcal{D}_{\rm c} + \frac{x_{\rm c} M_{\rm d}}{\tau_{\rm gg}} - (1 - x_{\rm c}) M_{\rm d} \left(\frac{1}{\tau_{\rm d}} + \frac{3}{\tau_{\rm sp}}\right) + \dot{Y}_{\rm d}(t).$$


3D pattern of dust pollution but the problem becomes strictly scaledependent: galaxies + CGM+IGM. 350 cKpc

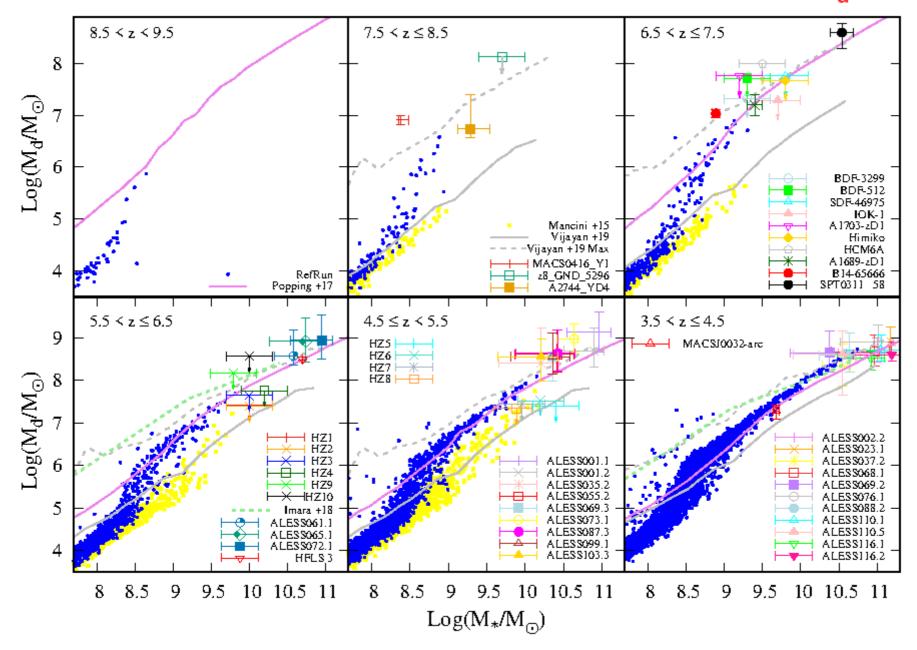
Environment dependence \rightarrow **scale dependence**


$$\dot{M}_{\rm d} = -\mathrm{SFR}(t) \mathcal{D}_{\rm c} + \frac{x_{\rm c} M_{\rm d}}{\tau_{\rm gg}} - (1 - x_{\rm c}) M_{\rm d} \left(\frac{1}{\tau_{\rm d}} + \frac{3}{\tau_{\rm sp}}\right) + \dot{Y}_{\rm d}(t).$$

3D pattern of dust pollution but the **problem becomes strictly scaledependent: galaxies + CGM+IGM**.

Environment dependence \rightarrow **scale dependence**

Statistical properties of simulated sample: $\Omega_d(z) \equiv \rho_d(z)/\rho_c, 0_c$

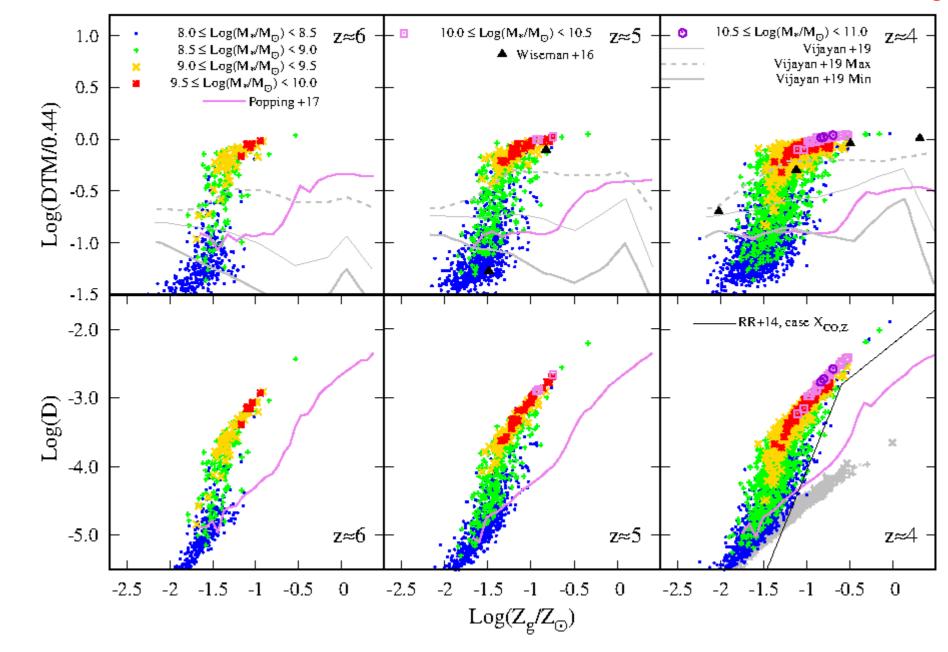


- Z > 9 Dust Mass \rightarrow stellar origin
- Z < 9 Dust Mass \rightarrow ISM grain growth
- Z ~ 4 Dust Mass in the volume agrees With other SPH implementations.

- Z < 6 Dust Mass in galaxies agrees with Both numerical and SAM models
- Z > 7 Dust Mass in galaxies disagrees Because of differences in process Efficiencies and stellar yields

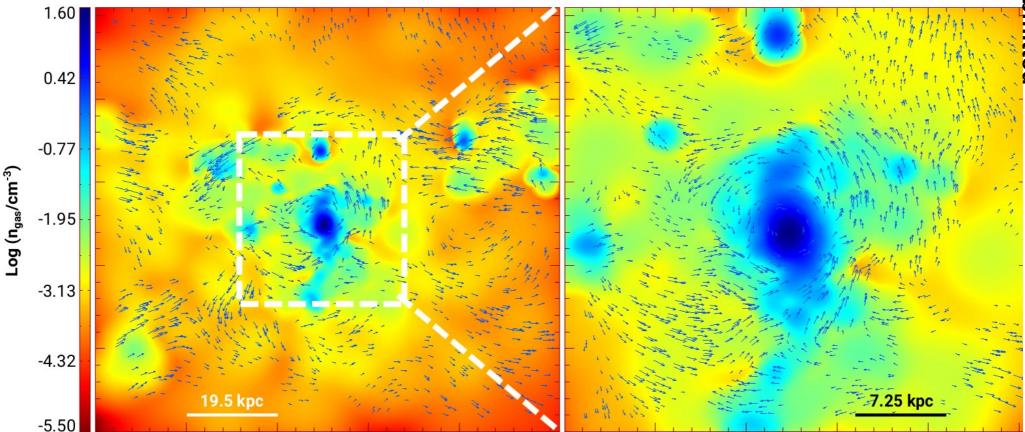
This is an integrated quantity.. across galaxy populations!

Statistical properties of simulated sample: M_d(M_{*})


Correct environment \rightarrow Agreement with t_{gg,0} ~ 2 Myr

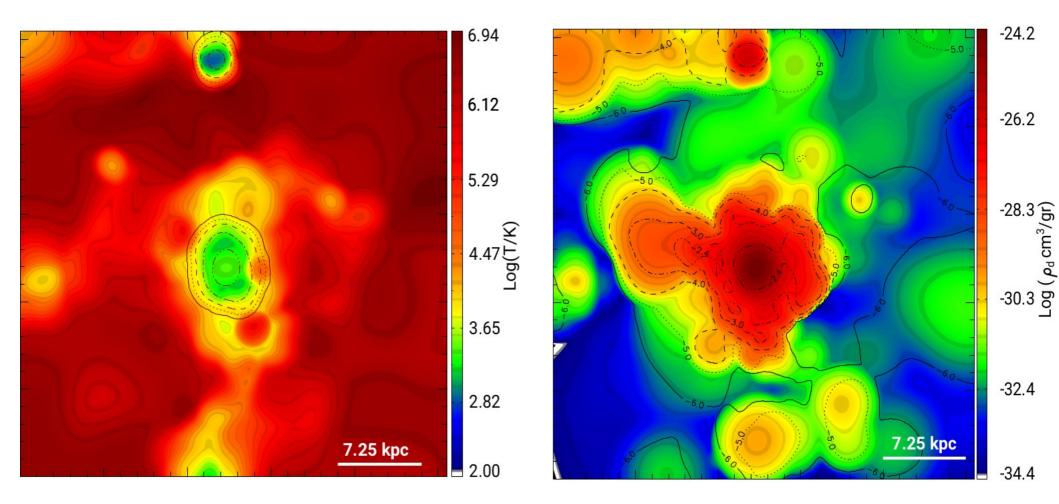
Statistical properties of simulated sample: M_d(M_{*})

	8.5 < z < 9.5		7.5	< z ≤ 8.5	6.5 ≤ z ≤ 7.5	H.
8 -			+			
6 -	Name	z	$Log(M_{\star})$ $[M_{\odot}]$	$\frac{\text{SFR}(\text{UV};\text{IR})}{[M_{\odot}\text{yr}^{-1}]}$	$Log(M_{\rm d})$ $[M_{\odot}]$	$T_{\rm d}$ [K]
6	A2744_YDA ^{a}	8.382	$9.29^{+0.25}_{-0.17}$	$20^{+17.6}_{-9.5}$	$6.74\substack{+0.66\\-0.16}$	37-63
	$MACS0416_Y1^b$	8.312	$8.38^{+0.11}_{-0.02}$	$55^{+175}_{-0.2}$	$6.91^{+0.07}_{-0.09}$; $6.56^{+0.07}_{-0.1}$	40;50
5	z8-GND-5296 ^c	7.508	9.7 ± 0.3	23.4; < 113	< 8.69; < 8.13 ; < 7.81	25; 35 ; 45
Ĩ	A1689-zD1 ^{d}	7.500	9.4 ± 0.1	$14.0^{+8.0}_{-8.0}$	7.2 ± 0.2	40.5
4	B14-65666 ^e	7.170	$8.89^{+0.01}_{-0.04}$	200^{+82}_{-39}	$7.05^{+0.04}_{-0.09}$; $6.97^{+0.03}_{-0.09}$; $6.91^{+0.08}_{-0.1}$	48;54;61
7 7	$BDF-3299^{f}$	7.109	9.30 ± 0.30	5.7; -	< 7.32; < 6.50	27.6; 45
	$BDF-512^{f}$	7.008	9.30 ± 0.30	6.0 ; -	< 7.72; < 6.89	27.6; 45
	$IOK-1^g$	6.960	9.70 ± 0.30	20.4; < 16.3	< 7.84 < 7.29; < 6.98	25; 35 ; 45
9 -	$SPT0311-58E^m$	6.900	$10.54^{+0.15}_{-0.24}$	$13.0; < 540 \pm 175$	$8.60\substack{+0.18\\-0.30}$	36 - 115
。	$SDF-46975^{f}$	6.844	9.80 ± 0.30	15.4 ; -	< 7.76; < 6.94	27.6; 45
°٢	$A1703$ - $zD1^{g}$	6.800	9.20 ± 0.30	9.0; 13.8	< 7.76; < 7.22 ; < 6.91	25; 35 ; 45
- L	$Himiko^g$	6.595	9.80 ± 0.30	32.3; 11.4	< 7.67; < 7.13 ; < 6.83	25; 35 ; 45
ίΓ	HCM $6A^g$	6.560	9.50 ± 0.30	13.7; 24.5	< 8.0; < 7.47 ; < 7.17	25;35;45
8 - 7 - 6 - 5 - 4 -			HZ3 HZ4 HZ9 HZ9 HZ10 nara +18 SS065.1 SS065.1 SS072.1 HFLS 3		ALESS001.1 ALESS001.2 ALESS035.2 ALESS055.2 ALESS069.3 ALESS069.3 ALESS07.3 ALESS087.3 ALESS087.3 ALESS087.3	ALESS037 ALESS069 ALESS069 ALESS076 ALESS0
	8 8.5 9 9.5	5 10 10	.5 11 8	8.5 9 9.5 10	0 10.5 11 8 8.5 9 9.	.5 10 10.5 1
				Log(M _* /M _o	_)	


Dust masses are inferred \rightarrow T_d is a critical !

Statistical properties of simulated sample: DTM(Z_a)

No evidence of $D(Z_g)(z)$ evolution


The environment of a massive halo at z~4: gas distribution

 $M_{DM} \sim 10^{12} M_{sun}$, $M_g \sim 10^{11} M_{sun}$, $M_* \sim 10^{10} M_{sun}$, $M_d \sim 10^8 M_{sun} \rightarrow A kind of MW at z~4$

Mechanical feedback by galactic winds

The environment of a massive halo at z~4: gas temperature and dust density

At smaller physical scales evidence of chemical feedback in dust grains. No dust at d > 30 kpc??

CONCLUSIONS

- Hydrodynamical simulations with dustyGadget can be successfully used to investigate dust formation and evolution of high-z galaxies providing their ISM multiphase and chemo-dynamical modeling is sufficiently accurate.
- Dust is a fundamental tracer of galaxy evolution through feedback: M_d(M_{*})(z), DTM(z) and D can be investigated both statistically and in their spatial distribution.
- At z > 9 galactic dust is mainly of stellar origin. Importance of metallicity corrections in regulating population transition.
- Process(es?) of **dust growth in the ISM** are of primary importance in tracing the many phases of the galactic ISM.
 - → galactic environments deserve deep investigations.
- Dust has a deep impact on observable quantities: colours, beta slopes → Mancini et al., 2017
- **RT through dust and gas** (see Glatzle at al., 2019) necessary to understand the escape fraction of UV photons and cosmic reionization.