

Extremely big Eyes on the Early Universe Rome, 9 - 13 September 2019

the early growth of the first supermassive black holes

Raffaella Schneider Sapienza Università di Roma

collaborators

- Rosa Valiante INAF/Osservatorio Astronomico di Roma
- Federica Sassano Sapienza Università di Roma
- Michele Ginolfi Observatoire Astronomique UNIGE
- Pedro Capelo University of Zurich
- Lucio Mayer University of Zurich
- Kazuyuki Omukai Tohoku University
- Simona Gallerani Scuola Normale Superiore di Pisa
- Luca Graziani Sapienza Università di Roma
- Edwige Pezzulli Sapienza Università di Roma
- Tullia Sbarrato Università di Milano Bicocca
- Marta Volonteri Institut d'Astrophysique de Paris
- Luca Zappacosta INAF/Osservatorio Astronomico di Roma

the first super-massive black holes

How do these SMBHs grow in less than 1 Gyr?

 M_{SMBH} (t) = $M_{seed}(t_{form}) e^{[(1-\epsilon)/\epsilon] \Delta t/tEdd}$ $\epsilon = 0.1 t_{Edd} = 0.45 Gyr$

models of SMBH growth require massive seeds (> 10⁴ M_{sun}) and/or episodes of super-Eddington accretion

seed black holes

their nature is set by the environmental conditions

 H_2 photo-dissociation from UV photons in the Lyman-Werner band: (11.2 – 13.6) eV

 $J_{21} = J_{LW} / 10^{-21} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ Hz}^{-1} \text{ sr}^{-1}$

see also Omukai 2001; Oh & Haiman 2002; Bromm & Loeb 2003; Omukai+2008; Agarwal +2012; Latif+2014; Sugimura+2014, 2015; Agarwal +2015; Latif & Volonteri 2015; ; Regan & Haehnelt 2009; Hosokawa+2012; Latif+2013,2014, 2016; Prieto+2013; Regan+2014; Inayoshi+2014;Choi +2015; Becerra +2015, 2018

seed black holes

their nature is set by the environmental conditions

metal line cooling and dust cooling lead to fragmentation

seed black holes

their nature is set by the environmental conditions

metal line cooling and dust cooling lead to fragmentation

the formation of the first SMBHs: planting and growing seeds in a highly biased region

Haiman & Loeb 2001, Volonteri et al. 2003, Wyithe & Loeb 2003, Haiman 2004, Menci et al. 2004, 2008, Shapiro 2005, Yoo & Miralda-Escude' 2004, Bromley et al. 2004, Volonteri & Rees 2005, Li et al. 2007, Pelupessy et al. 2007, Sijacki et al. 2009, Tanaka & Haiman 2009, Lamastra et al. 2010, Valiante et al. 2011, Petri et al. 2012; Valiante et al. 2015; 2016, 2017, 2018; Pezzulli et al. 2016, 2017; Sassano et al. 2019

the census of BH seeds progenitors

 $J_{21} < J_{21,cr}$ Z < Z_{cr}

 T_{vir} > 10⁴ K

 $J_{21}^{v_{1}} > J_{21,cr}$ Z < Z_{cr}

 $\Gamma_{\rm vir} > 10^4 \, {\rm K}$

 $D > D_{cr}$

 $D < D_{cr}$

redshift distribution averaged over 10 independent simulations

Sassano et al. in prep

- inhomogeneous metal enrichment
- inhomogeneous Lyman Werner radiation
- $Z_{cr} = 10^{-4} Z_{sun}$, $D_{cr} = 4.4 \ 10^{-9}$, $J_{21,cr} = 1000$

growing the first SMBHs

evolution of the total nuclear BH mass averaged over 10 simulations

1010 Accretion dominated $J_{21cr} = 1000$ + Total $J_{21cr} = 300$ $Z_{cr} = 10^{-4} Z_{sun}$ $Z_{cr} = 10^{-4} Z_{sun}$ 10⁹ м^{вн} Light 109 M_{light} Accretion dominated Heavy Mheavy 108 Intermediate 108 Heavy seeds 107 Light seeds dominated 107 dominated **Heavy seeds** $M_{BH}~(M_{\odot})$ M_{BH}/M_o 10⁶ 106 dominated 105 105 Light seeds dominated : 104 104 10³ 10^{3} 10² 10² 7.5 10.0 12.5 15.0 17.5 20.0 22.5 15 20 10 redshift redshift

Valiante et al. 2016

Sassano et al. in prep

chasing the nature of BH seeds: candidate statistics

Valiante et al. 2018a

at z > 10, 80% of light seeds and 98% of heavy seeds are isolated (most systems for ~ 50 Myr) these fractions decrease dramatically at z < 10

chasing the nature of BH seeds: candidate observability

SED of isolated heavy and light seeds prototypes

chasing the nature of BH seeds: candidate observability

heavy seeds 10 < z < 13 detectable with JWST & Athena

> similar BH-dominated SED at t > 100 Myr

> > light seeds 12 < z < 16 not detectable

chasing the nature of BH seeds: candidate observability

Pacucci et al. 2015, 2016; Natarajan et al. 2017; Volonteri et al. 2017

GW emission from BH seed pairs

Haiman & Loeb 2001, Volonteri et al. 2003, Wyithe & Loeb 2003, Haiman 2004, Menci et al. 2004, 2008, Shapiro 2005, Yoo & Miralda-Escude' 2004, Bromley et al. 2004, Volonteri & Rees 2005, Li et al. 2007, Pelupessy et al. 2007, Sijacki et al. 2009, Tanaka & Haiman 2009, Lamastra et al. 2010, Valiante et al. 2011, Petri et al. 2012; Valiante et al. 2015; 2016

exploring the high-z Universe through gravitational waves

ET sensitivity curve ET_D as extracted from S. Hild, S. Chelkowski, A. Freise: "Pushing towards the ET sensitivity using 'conventional' technology" <u>http://arxiv.org/abs/0810.0604</u>.

LISA sensitivity curve is from arXiv:1702.00786. Lines of constant SNR are computed using waveforms for non-precessing binaries (Santamaria et al. 2010).

exploring the high-z Universe through gravitational waves

Valiante, Colpi, RS et al. in prep

the IR luminous progenitors of z ~ 6 quasars

Ginolfi et al. 2019

X-ray properties of HyLIRGs at z > 6

Ginolfi et al. 2019

Summary

- BH seeds can form in a variety of flavours: light (100 M_{sun}), intermediate-mass (1000 M_{sun}) and heavy (10⁴ – 10⁵ M_{sun}) depending on environmental conditions
- Identifying their nature observationally is hard: on average we expect ~ 4 progenitors for each SMBH could be detectable by JWST and Athena, most likely powered by efficiently growing heavy seeds
- Failed or growing BH seeds paired in halo mergers will be detectable by 3rd generation GW telescopes out to z = 20!
- ★ z ~ 6 luminous quasars are the signposts of rare high-z over-densities, and that massive-IR luminous galaxies at higher z are their natural ancestors: 180 quasars @ z > 6 → ~ 70 HyLIRGs at 6.5 < z < 8 detectable with ALMA, 40% of detectable in X-rays

the combination of high spatial resolution with spectroscopic capabilities available with the E-ELT will provide a unique way of probing the formation history of SMBHs