

Search and confirmation of passive galaxies in the early Universe

Paola Santini

INAF - Osservatorio Astronomico di Roma

<u>Collaborators</u>: **E. Merlin**, A. Fontana, B. Magnelli, M. Castellano, F. Fortuni, L. Pentericci, D. Paris, A. Grazian, S. Pilo, K. B. Schmidt, M. Torelli

"Extremely Big Eyes on the Early Universe", 9-13 Sep 2019

Outline

- Passive galaxies (what are they, why do we care, when did they appear...)
- Selection techniques
 - A sample of z>3 passive candidates in CANDELS (Merlin+18, +19subm.)
- Confirmation techniques
 - Exploitation of the ALMA archive (Santini+19)
- What can we expect from future big eyes?
- Summary & conclusions

Schawinski+14

Two populations of galaxies

Choi+14

The emergence of the passive population

High-z Universe

Passive galaxies at high z: a challenge for theoretical models

Theoretical models struggle to reproduce the observations (Fontana+09, Vogelsberger+14, Feldmann+16, Merlin+19, Cecchi+19, ...)

The abundance of passive galaxies at different epochs is a powerful probe of the delicate interplay among the different physical processes responsible for their rapid assembly and for the abrupt shutdown of their SF activity (e.g. mergerdriven starbursts, feedback, ..).

Need for reliable selection criteria!

Fontana, PS,+09

How do we select passive candidates?

Observed colours

Daddi+04

Observed colours

Guo+13

See also Labbé+05 (iKM diagram), Wiklind+08 (JKL diagram, z>5), Mawatari+16 (KLM diagram, z>5)

See also similar diagnostics diagram such as the NUVrJ or NUVrK (*Arnouts+13, Ilbert+13, Davidzon+17, ...*)

Straatman+14:

19 UVJ passive galaxies (GOODS-S+COSMOS+UDS) 3.4<z<4.2 logM/M_o>10.6 15/19 have no FIR detection

Nayyeri+14:

16 post-starburst galaxies (GOODS-S) Selected from the amplitude of the Balmer break (H-K) (+ (J-H) and (Y-J) + non detections in U and B to reduce contaminants) 3 < z < 4.5 $M \sim 5 \times 10^{10} M_{\odot}$

See Wiklind+08, Mawatari+16 for z>5 passive candidates

Selection techniques: SED fitting

(see also Grazian+07, Fontana+09, ...)

Merlin+18, +19subm

Selection techniques: SED fitting + colour cut

Deshmukh+18:

Combination of SED fitting (to separate dusty from non-dusty) **and colour-cut** (to separate blue unobscured from red passive galaxies) 2<z<6

SED fitting vs colour-colour selection: importance of the SFH

SFH: which is the "best" choice at high *z*? (Very short timescales, close to formation epoch)

SED fitting vs colour-colour selection

CANDELS: the deepest multiwavelength data

Deep NIR/MIR photometry is fundamental to sample the 4000Å break in z>3 galaxies

(Official CANDELS catalogs; GOODS-South: Guo+2013, Fontana+2014 K+U bands, + new IRAC data w/ T-PHOT)

Credits: E. Merlin

z>3 passive galaxies in the CANDELS fields

Selection based on SED fitting assuming top-hat SFH with a probabilistic approach

Talk by E. Merlin								
Field/Sample	Total	<i>z</i> > 3	$S/N_{z>3}$	Reference				
COSMOS	38671	3778	1525	4	 Second and a second and a se Second and a second and as			
EGS	41457	4830	1775	13				
GOODS-N	35445	3953	1793	36				
GOODS-S	34930	5029	2884	33				
UDS	35932	4018	2540	16				
All fields	186435	21608	10517	102				
					➤ 1.73±0.17 x 10 ⁻⁵ Mpc ⁻³	Merlin+19subm.		

z>3 passive galaxies in the CANDELS fields

Merlin+19subm.

COLOUR-COLOUR DIAGRAMS:

- Incompleteness and contamination from red dusty galaxies
- May be affected by the lack of one band (used for the selection)

In particular, at high-z:

- Galaxies are redder
- Colour cuts inappropriate to take into account the short timescales available for galaxies to become quiescent

SED FITTING:

- Parameter degeneracy
- Rely on few bands
- Sensitive to the details of the adopted library
- Fit with nebular lines sensitive to photo-z uncertainty

How can we confirm the passive nature of these candidates?

Confirmation: spectroscopy

Cimatti+04

18<K<19 1.6<z<1.9 VLT FORS2 3 to 16 hr, tot 34 hr (see also Kriek+06,+09,+15, Gobat12, Onodera+12, Whitaker+13, Belli+14 van de Sande+16 Hill+16 ...)

Confirmation: spectroscopy

Glazebrook+17

4 hr H band, 7 hr K band

Median $SNR_{K}=6$

Confirmation: spectroscopy

Exclude contamination from dusty galaxies by means of FIR/submm observations

41 z>3 passive candidates in CANDELS (Merlin+19subm.) observed by ALMA in Band 6 or Band 7.

All data are imaged to ≥ 0.6 arcsec resolution.

Only 1 source is detected at 4σ (few marginal detections at $<3\sigma$, consistent with a normal distribution of the SNR for undetected sources).

For the remaining sources, no detection even in the stacks.

 Band 6 (23 sources)
 Band 7 (30 sources)

ALMA flux measurements converted into (constraints on the) SFR.

Santini+19, Santini+in prep.

Validation of robust individual candidates

Compare ALMA predictions to the SF-ing solutions of the opt fit (free redshift)

Santini+19, Santini+in prep.

Validation of robust individual candidates

RESULTS:

25 out of 41 candidates (61%) are robustly ($\geq 3\sigma$) confirmed

 \rightarrow the SFing solutions of the optical fits are rejected by ALMA observations

The remaining sources are inconclusive (available ALMA data is not deep enough)

Validation of the whole population in a statistical sense

- 29 sources (71%) are individually confirmed at 1σ
- The stacks are on average consistent with being passive

Santini+19, Santini+in prep.

Validation of the whole population in a statistical sense

- 29 sources (71%) are individually confirmed at 1σ
- The stacks are on average consistent with being passive
- Comparison with the location of the MS:

- 23 (56%) candidates located at least 1σ below the MS
- 10 (24%) candidates
 located at least 3σ below
 the MS

Santini+19, Santini+in prep.

Extremely Big Eyes on the Early Universe

 \diamond How are they going to improve the selection?

♦ How much faster would the spectroscopical confirmation of the candidates be?

Passive Galaxies

Passive candidate confirmation with (Extremely) Big Eyes

Kendrew+16

Used the simulation pipeline HSIM (Zieleniewski+15) to predict spectra for passive galaxies of various redshifts, masses and light profiles observed in 10 hr with HARMONI on the E-ELT

Redshift (z)	Stellar mass $(\log M/M_{\odot})$	Age (Gyr)	Magnitude (AB)	HSIM S/N (PS)	нsiм S/N (dV)	нзім S (Exp
2	10	3	J = 26.85	3	1.4	0.9
3	10	2	H = 27.06	5	1.2	0.6
4	10	1	K = 26.27	3	0.6	0.4
2	11	3	J = 24.35	26	15	9
3	11	2	H = 24.56	37	12	6
4	11	1	K = 23.77	30	6	3
2	12	3	J = 21.85	141	125	85
3	12	2	H = 22.06	186	72	65
4	12	1	K = 21.27	195	47	26

Passive candidate confirmation with Extremely Big Eyes

Source: Kendrew+16

Passive candidate confirmation with Extremely Big Eyes

□ High-z passive galaxies are challenging, but crucial to better understand the various physical processes responsible for galaxy assembly and evolution.

□ Need accurate selection techniques + confirmation of individual candidates

 \Box Several results confirm the existence of passive galaxies in the early Universe (z>3)

 \Box 102 candidates at z>3 selected in CANDELS by ad-hoc SED fitting technique (Merlin+18, +19subm.)

□ ALMA data lends decisive evidence to the quiescent nature of our candidates (Santini+19, Santini+in prep.):

- 61% individually and robustly confirmed adopting conservative assumptions
- Available observations are not deep enough to individually confirm the remaining candidates with high confidence
- The stacking analysis and the lack of reliable detections corroborates the passive nature of the remaining candidates, at least in a statistical sense

□ Future big eyes will provide a great contribution to the study of early passive galaxies and allow a much more robust classification and analysis