

MOSAIC for the ESO-ELT

François Hammer On behalf of the MOSAIC team (see <u>http://www.mosaic-elt.eu</u>)

Also: Geneva , Heidelberg/Göttingen, Stockholm/Lund/Uppsala, Helsinki/Turku, Univ. of Michigan, Madrid Complutense/IAA, Roma/Arcetri, Vienna, Lisboa/Porto Soon to come (October 2nd): STSci, ANU (Australia)

 \bigcirc

09/09/2019 - F. Hammer

MOS 'Principle'

1. exploits the telescope collecting surface

1. a moderately good image quality

To perform exceptional & unique science advances in 2020s

4 Science Cases used for trade-off

First-light galaxies

Dwarf galaxies

Inventory of matter at high z (halo gas & dark matter)

Extragalactic stellar populations

Cf Phase A Science Description

09/09/2019 - F. Hammer

MOSAIC on ELT

09/09/2019 - F. Hammer

MOSAIC on ELT platform

09/09/2019 - F. Hammer

IFUs & high multiplex modes over FoV= 50 arcmin²

- 200 point like objects in VIS, \geq 200 in NIR (though sky subtraction may limit)
- 8-10 IFUs with MOAO in NIR (High Definition Mode, ~ 80-100 mas)
- VIS could be observed simultaneously with NIR
- R=5000 + windows at R~ 10,000

Distribution & Operation of observing modes

Given the overwhelming number of foreground objects in the FoV, only a MOS can provide significant discoveries & progresses in the field!

Collecting surface ensures MOSAIC without competitors for faintest sources in NIR

Most distant galaxies: MOSAIC, follow-up of JWST imagery: Higher spectral resolution, search for popIII?

IFUs: unbeatable for the best sky subtraction

09/09/2019 - F. Hammer

INVENTORY OF MATTER IN THE DISTANT UNIVERSE

GAS

DARK MATTER

STARS ILLUSTRIS-TNG

INVENTORY OF MATTER IN THE DISTANT UNIVERSE

INTERGALACTIC MEDIUM TOMOGRAPHY

Simulations done in Japelj et al. 2019, submitted

09/09/2019 - F. Hammer

INVENTORY OF MATTER IN THE DISTANT UNIVERSE

DARK MATTER FROM ROTATION CURVES

High definition mode (multiple IFUs): dark matter evolution from well-sampled rotation curves up to z=4

Simulations of a $z=3.6 L^*$ galaxy, pixel scale =80 microns \rightarrow fine tuning of the size of the IFU/pixel

Simulations: Wang, Puech et al.

1- Survey speed: MOSAIC will be ~ 8 times faster than HARMONI in doing rotation curves

2- Since not all distant galaxies are rotating disks, multi-IFUs are mandatory to pre-select the targets

Science and final TLRs for MOSAIC

Finalize Trade-offs after comparison with other facilities in the 2020s:

- Pre-Phase B: Mass/budget imposes us to limit to: 4 NIR Spectrographs + 2 VIS Spectrographs no VIS IFU for limiting # of modes limited high spectral resolution mode in VIS (~ 10,000)
- Goals: multiplex \geq 200 in both VIS and NIR, however:
- In NIR sky subtraction could be a limitation in the high-multiplex mode
 only HDM still competitive for reaching ~ 2 mag deeper than JWST & for doing galaxy kinematics (larger IFU including for sky subtraction)
- Final-final trade-offs (science then technique) in pre-Phase B expected very soon in agreement between MOSAIC, ESO & STC

Apertures and sampling sizes for the various MOSAIC modes

Mode	HMM-VIS	HMM-NIR	HDM IFUs
Aperture (shown to scale)	840 mas	500 mas	
Diameter	840 mas	500 mas	1.9 arcsec
Microlens sampling	168 mas	100 mas	80 mas
Actual spatial resolution	840 mas	500 mas	160 mas
Fibres/ Object	19	19	493

Apertures and sampling sizes for the three MOSAIC modes

Mode	HMM-VIS	HMM-NIR	HDM IFUs
Aperture (shown to scale)	690 mas	500 mas	
Diameter	690 mas	500 mas	2.5 arcsec
Microlens sampling	230 mas	100 mas	80 mas
Actual spatial resolution	690 mas	500 mas	160 mas
Fibres/ Object	7	19	493

Increasing the multiplex to 200 by reducing # of fibers in the VIS bundles: lost of R=20,000 in VIS

In NIR:

-

- Multiplex up to 160, to be increased to ~ 200 or more
- HDM-IFUs also require 2.5 arcsec aperture for, e.g., sky subtraction and also source sizes (kinematics, high-z emission lines)
 - A possible increase of HDM-IFU spaxel size (last debate before soon coming TLR release)

Example: z~9 LAEs/LBGs

Conclusions

- MOS is essential for scientific programs requiring statistics, or source ID & their environments
- The ELT-MOS is unique for ALL targets not reachable by 10 meter telescopes,
- It will increase by ~ 5 the distance to which massive young stars can be analysed,
- Spectroscopy of first galaxies (AB >27) requires multiplex: 8000 H_{AB} = 27 galaxies in one FoV! But to reach this depth requires an efficient sky subtraction (HDM-IFUs)!
- 2019: starting preparation of GTO (125 to 140 GTO nights), mostly surveys to be defined
- Requires scientists willing to simulate science of the 2020-30 & to prepare surveys
- Websim-compass simulator http://websim-compass.obspm.fr/
- ESO is involved to the MOS despite difficulties on the telescope and on some first-light facilities.
- This year 2019: finalize last TLR detailss and prepare the Phase B contract
- Prepare the Consortium (80 M€ including 30 M€ for hardware), up to 15 countries, 40 Institutes
- Preparation of Contract, SoW & MoU in course with ESO and partners
- Budget for hardware almost closed, still few new partners in contact

Timeline (draft)

	20	20	20	21	20	22	20	2023 2024		20	25	2026		2027		2028		2029		
	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2
Prephase B	MoU/Co	ons.Agre	ee./TLR/	ICD																
			t0 = Deo	c. 2020	(unlikely	before)														
Phase B	B1		B1		Nov. 20	21: Syst	em Req	Review												
B2					B2			June 20)23 : PDI	1										
Phase C								CDR			Nov 202	24: Critio	cal Desig	gn Revie	W					
OFDR											OFDR	June 20	025: Opt	ical Fina	al Desigr	n Review	/			
FDR											FDR>	MRR	Nov. 20	25: Fina	l Design	n Review	(All)			
Phase D: MA	IT											Manufa	acture a	nd Proci	ure					
sub-systems													AIT Uni	ts and S	S					
AIT System															AIT Sys	tem> l	nstrume	ent		
Armazones A	IT																			
Hall																				
Telescope																				

WEBSIM-COMPASS simulator

Websim-Compass

Menu e	Atmosphere / Site	Submit all
ment vrds	Zenith angle [deg] = 30 Airmass = 1.15	
	Seeing at zenith (@ 500 nm) [arcsec] = 0.82	Instrumer
n	Seeing at specified angle [arcsec] = 0.89	parameter s
ic h Aessages	Include Differential Atmospheric Refraction	
	Telescope	Physical
	Pupil Diametre [m] = 39	parameter s
eu Puech	Effective central obscuration = [%] 8.1	
Logout	Temperature [K] = 285	
	Emissivity = 0.05	Observation
ct Us	Throughput (Atmosphere + Telescope) [%] = 90	parameter s
Contact		

Exploring all the parameter space(s) (N>>10 parameters) for all SCs would be

© 2016 Websim-Compass

prohibitive in (calculation & human) time