

EUCLID SPACE MISSION

(a few whys and hows)

R. Scaramella (on behalf of Euclid Science Team and Euclid Consortium)

(Euclid Consortium, old timer, Mission Survey Scientist, member of the EC Board and EST)

Lots of figures and material courtesy of: EC&ESA (SciRD, CalWG, ECSURV, ESSWG, VIS, NISP, SWGs, OUs ...)

Red Book released in July 2011 (ESA web pages)

kosmobob@inaf.it

ESA Mission

<u>(</u>1)

agenzia spazia italiana

euclic

INFŃ

Big & Complex

1. Why 1. Dark Energy & Dark Matter (Cosmology); Legacy

2. How 2. Space imaging (morphology & NIR) + Spectra: Grav. Lensing & Clustering

3. When 3. 2022-2028+

Main Scientific Objectives

Understand the nature of Dark Energy and Dark Matter by:

- Reach a dark energy FoM > 400 using only weak lensing and galaxy clustering; this roughly corresponds to 1 sigma errors on w_p and w_a of 0.02 and 0.1, respectively.
- Measure γ , the exponent of the growth factor, with a 1 sigma precision of < 0.02, sufficient to distinguish General Relativity and a wide range of modified-gravity theories
- Test the Cold Dark Matter paradigm for hierachical structure formation, and measure the sum of the neutrino masses with a 1 sigma precision better than 0.03eV.
- Constrain n_s , the spectral index of primordial power spectrum, to percent accuracy when combined with Planck, and to probe inflation models by measuring the non-Gaussianity of initial conditions parameterised by $f_{\rm NI}$ to a 1 sigma precision of ~2.

by JNL to a 1	signa precision or ~2.	SURV	FYS			
Real of the second states of the	Area (deg2)		Description			
Wide Survey	15,000 (required) 20,000 (goal)		Step and stare with 4 dither pointings per step.			
Deep Survey	40		In at least 2 patches of $> 10 \text{ deg}^2$ 2 magnitudes deeper than wide survey			
		PAYLO	· · · · · · · · · · · · · · · · · · ·	•		
Telescope	1.2 m Korsch, 3 mirror anastigmat, f=24.5 m					
Instrument	VIS	NISP				
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$	$0.763 \times 0.722 \text{ deg}^2$				
Capability	Visual Imaging	NIR Imaging Photometry NIR Spectroscopy			pectroscopy	
Wavelength range	550– 900 nm	Y (920- 1146nm),	J (1146-1372 nm)	H (1372- 2000nm)	1100-2000 nm	
Sensitivity	24.5 mag 10σ extended source	24 mag 5σ point source	24 mag 5σ point source	24 mag 5σ point source		g cm-2 s-1 resolved line
Detector	36 arrays	16 arrays				
Technology	4k×4k CCD	$2k \times 2k$ NIR sensitive HgCdTe detectors				
Pixel Size	0.1 arcsec	0.3 arcsec 0.3 arcsec				
Spectral resolution					R=250	
		SPACEC	RAFT			
Launcher	Soyuz ST-2.1 B from Kourou					
Orbit	Large Sun-Earth Lagrange point 2 (SEL2), free insertion orbit					
Pointing	25 mas relative pointing error over one dither duration 30 arcsec absolute pointing error					
Observation mode	Step and stare, 4 dither frames per field, VIS and NISP common $FoV = 0.54 \text{ deg}^2$					
Lifetime	7 years					
Operations	4 hours per day contact, more than one groundstation to cope with seasonal visibility variations;					
Communications	maximum science dat	a rate of 850 G	Gbit/day downlink	k in K band (2	6GHz), stee	erable HGA
	E	Budgets and P	erformance			
			Mass (kg)		Nominal Power (W)	
industry			Astriu	Im TAS	S	Astrium
Payload Module			696	410		496
Service Module			835	647		692
Propellant	of ^{iSICA}	148	232	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
Adapter news/ Harness and PDCF losses power			N 90	65	Stranger	108
Total (instuding margin) ogenzia spaziale			2160	136	8	1690

All data you need to know (Red Book, some changes)

 Wide Area (>10⁴ sq deg) Wide Field (FoV > 0.5 sq deg)

Opt. imaging NIR photom NIR slitless

Two instruments: **VIS**: optical imager & **NISP:** NIR imager + grisms

EUCLID Mission

Cesa science

Looks like CMB satellites but with step & stare

- Launcher: Soyuz ST2-1B from Kourou
- Direct injection into tranfer orbit
 - Transfer time: 30 days
 - Transfer orbit inclination: 5.3 deg
- Launch vehicle capacity:
 - 2160 kg (incl. adapter)
 - 3.86 m diameter fairing
- Launch \approx 2022
- Mission duration: 6 years

esa

Advanced Studies and Technology Preparation Division

region visibility: twice/yr at ecliptic plane (1deg/day), max at ecliptic

6

poles (always).

spin 2 behaviour as in WL

For stability need to always observe orthogonally to the sun

4 dithers ~1 full Field -0.5 sq deg- / 1.25 hr (\approx 10 sq deg/day)

Observing sequence for each field + move to next one \sim 4500 s

INFN

Slitless: Red grism 1.25-1.8μ (Hα: 0.9<z<1.7)</p>
4 exposures: directions 0, 90, 180 degs, then again once
Slitless: Blue grism 0.92-1.25μ (TBD) only in the Deep

Large sky regions are unsuitable or subpar for our T_exp

Euclid Deep Fie^{*}

Requirements

- cover at least 40 square degrees in two fields (one in Northern, one in Southern Emisphere)
- at least 2 magnitudes deeper
 (-> 40 visits)
- growth in time like the survey
- Completeness Purity Calibration files [CPC]: at least 40 square degrees of spectroscopy, 10 visits with large angular separation for spectral dispersion

Three Deep Fields Proposal now approved by everybody

So now have:

- a two tier EDF-North [EDFN] (20 sq deg x 10 visits+ inner sq deg 10 x 30 visits more); + self-cal (4 sq deg, monthly visits, partial random cover)
- an EDF-Fornax [EDFF] (10 sq deg x 56 visits) comprising the Chandra Deep South
- an EDF-South [EDFS] (23 sq deg x 45 visits); collaboration with LSST

limiting AB mag 5σ pointlike: VIS ~27.5, NISP y, J, H ~26

Also "blue" [0.92-1.25µ] grism can be used to observe the deep fields

R.A. (2000)

(P. Capak)

Euclid Deep Field North (EDF–N)

R.A. (2000)

R.A. 17:58:55.9, Dec. +66:01:03.7, J2000, 10 sq. deg.

Wide view context:

- Reddening: E(B–V) •
- **Contamination: bright stars**

euclid CC CSA

Dust map: Planck Collaboration, A&A, 2014, 571, 11 Star catalog: Pickles et al., PASP, 2010, 122, 898

Center is offset by ~1 deg from geometric NEP to maximise overlap with Spitzer

plot (and similar ones) by J.C. Cuillandre

Magnitude (i-band

³⁻⁴ (B-H) 2-3 2-0-2

Euclid Deep Field North (EDF–N)

R.A. 17:58:55.9, Dec. +66:01:03.7, J2000, 10 sq. deg.

Wide view context:

- Optical: true image (RGB)
- Optical: stellar density (R)

True image: A. Mellinger, PASP, 2009, 121, 1180 Stellar density dataset: ESA/Gaia/DPAC

euclid CC CSA

good: several stars for PSF but not too many

R.A. (2000)

Dec. (2000) 50

Euclid Deep Field North (EDF-N)

R.A. 17:58:	55.9, D	ec. +66:0 ⁻	1:03.7, J2000, 10 sq. deg.
Equatorial: Ecliptic: Galactic:	269.73 258.69 95.76	+89.45	Dust map: Planck Collaboration, A&A, 2014, 571, 11 Star catalog: Pickles et al., PASP, 2010, 122, 898

Center is offset by ~1 deg from geometric NEP to maximise overlap with Spitzer (P. Capak)

R. Scaramella-Big Eyes-Rome-9 September 2019

EDF-Fornax

4x5+1 fields, 56 visits (+16 compensate for larger <zodiacal>), no much smearing at borders

Change from rectangle (Euclid optimal) to a circle to better cover Spitzer (Capak) and LSST

Euclid Deep Field Fornax (EDF-F)

R.A. 03:31:43.6, Dec. -28:05:18.6, J2000, 10 sq. deg.

Wide view context:

- Reddening: E(B–V)
- Contamination: bright stars

Dust map: Planck Collaboration, A&A, 2014, 571, 11 Star catalog: Pickles et al., PASP, 2010, 122, 898

This plot and similar ones by J.C. Cuillandre

Magnitude (i-band)

5

³⁻⁴ (a) 2-3 2-0 2-0

R.A. (2000)

Euclid Deep Field Fornax (EDF-F)

R.A. 03:31:43.6, Dec. -28:05:18.6, J2000, 10 sq. deg.

Wide view context:

- Optical: true image (RGB)
- Optical: stellar density (R)

True image: A. Mellinger, PASP, 2009, 121, 1180 Stellar density dataset: ESA/Gaia/DPAC

Euclid Deep Field Fornax (EDF-F)

R.A. 03:31:43.6, Dec. -28:05:18.6, J2000, 10 sq. deg.

Equatorial: 52.93 –28.09 Ecliptic: 40.77 –45.40 Galactic: 224.01 –54.64

Dust map: Planck Collaboration, A&A, 2014, 571, 11 Star catalog: Pickles et al., PASP, 2010, 122, 898

Tried to also fit some rectangular shapes for LSST

Euclid Deep Field South (EDF-S)

Search area for the optimal contiguous 20 sq. deg.

Wide view context:

- Reddening: E(B–V)
- Contamination: bright stars

Dust map: Planck Collaboration, A&A, 2014, 571, 11 Star catalog: Pickles et al., PASP, 2010, 122, 898

lid

For Euclid a simple circle is best, covered with 43 tiles

LSST possible ways of covering 20 sq deg: spatially varying completeness

Since LSST goes much deeper than required by Euclid this solution would match well Euclid needs but it has **too low efficiency for LSST**

LSST prefers this binocular shape because it is optimal and has 100% efficiency for it

> Need LSST ~33 hrs for Euclid photoz depth

From Euclid to present times, a well known concept...

To cover the LSST shape need 46 tiles instead of 43 (~ +7%)

"Stadium" shape (pill-like)

Radius, Perimeter, Area $R = 1.78^{\circ}$

 $P = 2R(2 + \pi)$ $A = R^2(4 + \pi)$

But need some more fields when tilted on the sky:

On average need ~51+ fields depending on covered fraction (~ + 19%)

Need to also add ~ +12% time for larger Zodiacal, i.e. from 40 to 45 visits. Total is ~ 102 days for a circle, in total add ~ 3 weeks for stadium shape]. TBD

Extinction: E(B–V)

Contamination: bright stars

Euclid Deep Field South (EDFS)

 Euclid Deep Field South

 R.A. 04:05:07.2
 Dec. -48:25:12.0

 23 sq. deg. stadium FOV
 Ted

Wide context (1600 sq. deg.)

J2000

Dust map: Planck Collaboration, A&A, 2014, 571, 11 Star catalog: Pickles et al., PASP, 2010, 122, 898

Magnitude (i-band)

3

4

5

Temperature (g-H)

< 0

6^h00^m R.A. (2000)

ooks fine for bright stars

6^h00^m

R.A. 04:05:07.2

23 sq. deg. stadium FOV

Wide context (1600 sq. deg.)

7^h00^m

Dec. -48:25:12.0

5^h00^m

4^h00^m00^s

R.A. (2000)

J2000

3^h00^m

2^h00^m

True image: A. Mellinger, PASP, 2009, 121, 1180 Stellar density dataset: ESA/Gaia/DPAC

Optical: true image (RGB)

Galactic -3012500 500 stars -40° 5000 Dec. (2000) -50 500 stars -60

Optical: stellar density (Gaia)

R. Scaramella-Big Eyes-Rome-9 September 2019

Ecliptic

Euclid Deep Field South (EDFS)

23 square deg	rees stadiu	m geometry	field
a = 3.50 deg.	r = 1.75 de	eg. Positio	on angle = 61.3 deg.
Eq 3.56 ial:	61.28	-48.42	
Ecliptic:	36.56	-66.60	consortium
Galactic:	256.05	-47.14	Dust map: Planck Collaboration, A&A, 2014, 571, 11 WISE 12um: Meisner&Finkbeiner, ApJ, 2014, 781, 5

Looks fine for extinction

Field stars properties

Extended sources to scale

Euclid Deep Field South (EDFS)

Looks fine for bright stars and large objects

CHECKED ALSO ON WISE [Meisner,

A.M., Lang, D., and Schlegel, D.J. (2017) "Deep Full-sky Coadds from Three Years of WISE and NEOWISE Observations"]

R. Scaramella-Big Eyes-Rome-9 September 2019

CPCs& EDFs coverage build up

After one year can have 1 visits (all red spectra) on CPC + EDFF = 50 sq deg for Q1 release

CPC visits are counted also as EDF visits

R. Scaramella-Big Eyes-Rome-9 September 2019

EDFs status 2019 (now frozen)

(square deg x visits; number of latters will be increased to compensate for larger zodiacal background)

- EDFN (20 x 10 + inner 10 x 30) = (1/2) CPC + (1/4) DEEP; offset 1 deg from NEP; observed by Spitzer
- EDFF (10 x 40) = (1/4) DEEP; Fornax region; observed by Spitzer
- EDFS (23 x 40) = (1/2) CPC + (1/2) DEEP; observations allocated for Spitzer; LSST optical coverage requested

CPC visits are counted also as **EDF** visits

75% synergy between CPCs and EDFs

Visibility from Ground facilities has increased enormously, enabling much more science to be done on EDFs

Details on ESA web pages

2019 Survey a great step ahead: polar caps, all calibrations up to date, all EDFs

Expected coverage from the ground for WL photoz

Figure 7.1.2 Expected coverage from the ground for Euclid DR2/DR3

Data Release schedule

01

50 dea²

~2022

Survey Performance

Verification

PV End

Start of

nominal mission

Year 7

~15.000

deg²

~2028

Q4

End Nominal

Survey

03

Public data releases:

DR1

~2,500

dea²

~2025

Q2

DR2

~7,500

deg²

DR = data release (three DR of increasing areas: early -2500-, intermediate -7500-, final -15000 sq degs)

Q1: 14 months after start of the nominal mission — data released: one visit on the deep fields [50 sq deg]

DR1: one year after Q1data released: 2500 sq deg

