Detecting Pop. III Stars with HARMONI on the ELT

Theory predicts the existence of Population III (PopIII) stars:

ES+ Ø

Theory predicts the existence of Population III (PopIII) stars:

 \star First stars to form in the Universe.

IPAG

Theory predicts the existence of Population III (PopIII) stars:

- \star First stars to form in the Universe.
- ★Primordial compositions: only containing H, He and traces of Li.

Theory predicts the existence of Population III (PopIII) stars:

- \star First stars to form in the Universe.
- ★Primordial compositions: only containing H, He and traces of Li.

ONERA

★ Presumed to be very Massive $(\langle M_{\star} \rangle \gtrsim 100 \,\mathrm{M}_{\odot})$

Theory predicts the existence of Population III (PopIII) stars:

- \star First stars to form in the Universe.
- ★Primordial compositions: only containing H, He and traces of Li.
- ★ Presumed to be very Massive $(\langle M_{\star} \rangle \gtrsim 100 \,\mathrm{M}_{\odot})$
- ★Different IMF to PopI/PopII stars?

ONERA

UK Astronomy Technology Centre

CRAL

@irap

IPAG

ONERA

Theory predicts the existence of Population III (PopIII) stars:

- \star First stars to form in the Universe.
- ★Primordial compositions: only containing H, He and traces of Li.
- ★ Presumed to be very Massive $(\langle M_{\star} \rangle \gtrsim 100 \,\mathrm{M}_{\odot})$
- ★ Different IMF to PopI/PopII stars?
- ★Not found in the present day Universe

Theory predicts the existence of Population III (PopIII) stars:

- \star First stars to form in the Universe.
- ★Primordial compositions: only containing H, He and traces of Li.
- ★ Presumed to be very Massive $(\langle M_{\star} \rangle \gtrsim 100 \,\mathrm{M}_{\odot})$
- ★ Different IMF to PopI/PopII stars?
- ★Not found in the present day Universe
- ★Yet to be observed

Theory predicts the existence of Population III (PopIII) stars:

- \star First stars to form in the Universe.
- \star Primordial compositions: only containing H, He and traces of Li.
- \star Presumed to be very Massive ($\langle M_{\star} \rangle \gtrsim 100 \,\mathrm{M_{\odot}}$)
- ★Different IMF to PopI/PopII stars?
- \star Not found in the present day Universe
- ★Yet to be observed

 \star Needed for galaxy evolution (i.e. to produce metals for future star formation) theories

★ Due to large mass, Pop. III stars have the potential to completely ionise He.

IPAG

UK Astronomy Technology Centre

★ Due to large mass, Pop. III stars have the potential to completely ionise He.

UNIVERSITY OF

RAL Space

Durham

University

ONERA

Irap

UK Astronomy Technology Centre

★ Due to large mass, Pop. III stars have the potential to completely ionise He.

★ HeIIλ1640

Durham |

recombination line possible signature.

UNIVERSITY OF

RAL Space

Irap

UK Astronomy Technology Centre

 \star Due to large mass, Pop. III stars have the potential to completely ionise He.

\star HeII λ 1640

recombination line possible signature.

★ HARMONI on the ELT maybe able to detect this signature at a range of different redshifts.

> UNIVERSITY OF OXFORD

RAL Space

Jurham

★ Due to large mass, Pop. III stars have the potential to completely ionise He.

★ HeII λ 1640

recombination line possible signature.

- ★ HARMONI on the ELT maybe able to detect this signature at a range of different redshifts.
- different redshifts.
 ★ Other objects can produces this line (e.g. AGN & SNe)

UNIVERSITY OF

OXFORD

RAL Space

- ★First light general purpose Integral Field Spectrograph for ELT
- ★V-K ($0.45 2.45 \mu m$)

spectral coverage

- ★R=3500,7000,17000 resolutions
- ★60,20,10 & 4mas pixel scales
- ★NoAO/LTAO/SCAO correction
- ★206x152 pixel field of view (image slicer with 32000 spaxels)

★First light general purpose

Instrument		Telescope		Miscellaneous	
Input Cube	(None)	Telescope:	\$	Subtract Background	
Output Dir	Output_cubes	AO Mode:	•	Return Object Cube	
DIT [s]	900	Zenith Seeing [arcsec]:	0.67	Return Transmission Cube	
	900	Lennen beenig (arebee).	0.07		
NINT	1	Zenith Angle [deg]	0	No. of processors (1-32)	31
X Scale [mas]	20			Noise Seed	
Y Scale [mas]	20	User PSF (replaces AO choice)	(None) 📄	Set Spec Samp [A/nix]	[]
Grating		Telescope Temperature [K]:	280.5	Set spec sump [Apix]	[
oracing		Commence Simulation		Additional PSF Blur [mas]:	0

(image slicer with 32000 spaxels)

All of which is simulated with HSIM (see Zieleniewski et al., 2015)

Z

★ First light general purpose

Instrument			ال ال	eous	
Input Cube		waveleng	L M ur	nd	
Output Dir	range: 0.45	$\leq \lambda \leq 2.45 \mu$	m b	e Cube	
DIT [s]	900 Zenith Seein	g [arcsec]: 0.67		reuse	
NINT	1 Zenith Angle	[deg] 0	No. of processors (1	L-32)	31
X Scale [mas]	20		Noise Seed		
Y Scale [mas]	20 User PSF (rep	laces AO choice) (None) 📄	Set Spec Samp [A/p	pix]	
Grating	Telescope Te Commence	mperature [K]: 280.5 Simulation	Additional PSF Blur	[mas]:	0

(image slicer with 32000 spaxels)

All of which is simulated with HSIM (see Zieleniewski et al., 2015)

Z

★ First light general purpose

Instrument			ieous	
Input Cube	(No	HARIVIONI wavelength	und	
Output Dir	0	range: $0.45 < \lambda < 2.45 \mu m$	be	
DIT [s]	900	Zenith Seeing [arcsec]: 0.67	on Cube	
NINT	1	Zenith Angle [deg] 0 No. of processors	(1-32)	31
X Scale [mas]	20	Uall 11610 for		•
Y Scale [mas]	20	ΠΕΠΛΙΟ40ΙΟΙ	/pix]	
Grating		$3 \le z \le 10 \rightarrow 0.656 \le \lambda \le 1.8 \mu \mathrm{m}$	r [mas]:	0

(image slicer with 32000 spaxels)

All of which is simulated with HSIM (see Zieleniewski et al., 2015)

Z

NewHorizon Simulation

Science & Technology Facilities Council UK Astronomy Technology Centre

- New cosmological Hydrodynamical
 + N-Body simulation
- ★ Run from z~45 to z~0.7 with a volume of 20MPc
- ★ Use the Adaptive Mesh Refinement code RAMSES (Teyssier, 2002).
- Includes: Gas, Dark Matter, Stars particles, Black Holes, star formation, stellar feedback and AGN feedback.
- ★ It has a maximum spatial resolution of $\Delta x \sim 35 \, {\rm pc}$ and a mass resolution of $2 \times 10^5 \, {\rm M}_{\odot}$

UNIVERSITY OF OXFORD RAL Space

★See Dubois et al., in prep and references within

1) Run grid of CLOUDY simulations using the predicted SEDs

- 1) Run grid of CLOUDY simulations using the predicted SEDs
- 2)Select galaxies from the NewHorizon Simulation

* stars in the simulation are in fact star particles with mass of $10^4 \lesssim M_\star \lesssim 10^5 \, {\rm M}_\odot$

- 1) Run grid of CLOUDY simulations using the predicted SEDs
- 2) Select galaxies from the NewHorizon Simulation

★>50% Pop. III stars

* stars in the simulation are in fact star particles with mass of $10^4 \leq M_{\star} \leq 10^5 \,\mathrm{M_{\odot}}$

- 1) Run grid of CLOUDY simulations using the predicted SEDs
- 2) Select galaxies from the NewHorizon Simulation

★>50% Pop. III stars ★Half Mass Radius < 1kpc

* stars in the simulation are in fact star particles with mass of $10^4 \leq M_{\star} \leq 10^5 \,\mathrm{M_{\odot}}$

- 1) Run grid of CLOUDY simulations using the predicted SEDs
- 2)Select galaxies from the NewHorizon Simulation

★>50% Pop. III stars
★Half Mass Radius < 1kpc
★Mean Pop. III age <2 × 10⁶ Myr

ONERA

* stars in the simulation are in fact star particles with mass of $10^4 \lesssim M_\star \lesssim 10^5 \, {\rm M}_\odot$

OXFORD RAL Space

- 1) Run grid of CLOUDY simulations using the predicted SEDs
- 2)Select galaxies from the NewHorizon Simulation
- 3) Identify each star* as either PopIII or PopII

Durham OXFORD RAL Space

★>50% Pop. III stars
★Half Mass Radius < 1kpc
★Mean Pop. III age <2 × 10⁶ Myr

ONERA

* stars in the simulation are in fact star particles with mass of $10^4 \lesssim M_\star \lesssim 10^5 \, {\rm M}_\odot$

- 1) Run grid of CLOUDY simulations using the predicted SEDs
- 2)Select galaxies from the NewHorizon Simulation
- 3) Identify each star* as either PopIII or PopII
- 4) Combine CLOUDY runs with NewHorizon to produce observable objects.

SEDs from Zackrisson et al., 2016

* stars in the simulation are in fact star particles with mass of $10^4 \leq M_{\star} \leq 10^5 \,\mathrm{M_{\odot}}$

- 1) Run grid of CLOUDY simulations using the predicted SEDs
- 2)Select galaxies from the NewHorizon Simulation
- 3) Identify each star* as either PopIII or PopII
- 4) Combine CLOUDY runs with NewHorizon to produce observable objects.

UNIVERSITY OF

OXFORD

RAL Space

Durham

ONERA

* stars in the simulation are in fact star particles with mass of $10^4 \leq M_{\star} \leq 10^5 \,\mathrm{M_{\odot}}$

UK Astronomy Technology Centre

- 1) Run grid of CLOUDY simulations using the predicted SEDs
- 2)Select galaxies from the NewHorizon Simulation
- 3) Identify each star* as either PopIII or PopII
- 4) Combine CLOUDY runs with NewHorizon to produce observable objects.

UNIVERSITY OF

OXFORD RAL Space

5)Observe the simulation using HSIM

Durham

ONERA

* stars in the simulation are in fact star particles with mass of $10^4 \leq M_{\star} \leq 10^5 \,\mathrm{M_{\odot}}$

UK Astronomy Technology Centre

Observing Pop. III Stars

Recovered Galaxy Spectrum

White Dashed Contour: $\Sigma_{\star} \geq 1~M_{\odot}$ White Solid Contour: $\Sigma_{\star} \geq 100~M_{\odot}$

Grisdale et al., in prep

IPAG

Recovered Galaxy Spectrum

White Dashed Contour: $\Sigma_{\star} \geq 1~M_{\odot}$ White Solid Contour: $\Sigma_{\star} \geq 100~M_{\odot}$

UNIVERSITY OF

 $\begin{array}{l} \mbox{Cyan Dashed Contour: } \Sigma_{gas} \geq 10^{1.5}\,\mbox{M}_{\odot} \\ \mbox{Cyan Solid Contour: } \Sigma_{gas} \geq 10^{2.5}\,\mbox{M}_{\odot} \\ \mbox{Grisdale et al., in prep} \end{array}$

ONERA

IPAG

Recovered Galaxy Spectrum

Grisdale et al., in prep

10 Hour observation with HSIM

Grisdale et al., in prep

irap

IPAG

ONERA

Observations at Multiple Redshifts

ONERA

IPAG

Irap

Observations at Multiple Redshifts

ONERA

IPAG

Ourap

Impact of IMF

Impact of IMF: PopIII.2

★ 6 of 8 galaxies still produce HeIIλ1640 but in all cases the line strength is weaker.

Impact of IMF: PopIII.2

- ★ 6 of 8 galaxies still produce HeIIλ1640 but in all cases the line strength is weaker.
- ★ Only 4 of the 8 are now observable.

ONERA

Impact of IMF: PopIII.2

UK Astronomy Technology Centre

ONERA

IPAG

Irap

RAL Space

Impact of IMF: PopIII.K

★ Some galaxies produce extremely weak emission lines.

Impact of IMF: PopIII.K

- ★ Some galaxies produce extremely weak emission lines.
- ★ However <u>none</u> are observable.

+ES+

IPAG

★ $F_{\text{peak}} \ge 10^{-16} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2}$ ★ $F_{\text{peak}}/F_{\text{cont.}} > 1.4$

UK Astronomy Technology Centre

- ★ $F_{\text{peak}}/F_{\text{cont.}} > 1.4$
- ★ $20 \le FWHM \le 100 \text{km s}^{-1}$

ONERA

LAM 🔨

+ES+ O

IPAG

@irap

- ★ $F_{\text{peak}} \ge 10^{-16} \,\text{erg s}^{-1} \,\text{cm}^{-2} \,\text{arcsec}^{-2}$
- ★ $F_{\text{peak}}/F_{\text{cont.}} > 1.4$
- ★ $20 \le FWHM \le 100 \text{km s}^{-1}$
- ★ In all cases, HeIIλ1640 detection will require target candidates from preceding observations.

UNIVERSITY OF OXFORD RAL Space

ONERA

ES O

IPAG

CRAL

@irap

LAM

UK Astronomy Technology Centre

Summary

Take aways:

- \star Using High-res cosmological simulations, and HSIM it is possible to model observations of the PopIII for a given IMF and set of SEDs.
- \star If the IMF of Pop. III stars is top heavy they will be detectable in observations via the HeII λ 1640 emission line for $3 \le z \le 10$.
- ★ If Pop. III stars follow a "traditional" IMF they are unlikely to be observed via the HeII λ 1640 emission line at any z.
- \star Morphology of such galaxies is unlikely to be resolved.
- ★ Emissions form galaxies need to have a $F_{\text{peak}} \ge 10^{-16} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2}$,

 $F_{\text{peak}}/F_{\text{cont.}} > 1.4$ and $20 \leq \text{FWHM} \lesssim 100 \text{km s}^{-1}$ to be detectable.

Still to come:

- \star "Observing" HeII $\lambda 1640$ in multiple galaxies at a given redshifts. Does Size/ morphology etc. matter?
- \star What impact does AGN have on the Pop. III signal.
- ★Will observations provide constraints on PopIII IMFs?

For details sign up to https://forms.gle/rdha7VDjtRdUYMUN8