Detecting Pop. III Stars with HARMONI on the ELT

Kearn Grisdale

Collaborators: Niranjan Thatte
Julien Devriendt
Miguel Pereira-Santaella
Population III Stars

Theory predicts the existence of Population III (PopIII) stars:
Population III Stars

Theory predicts the existence of Population III (PopIII) stars:

★ First stars to form in the Universe.
Population III Stars

Theory predicts the existence of Population III (PopIII) stars:

★ First stars to form in the Universe.
★ Primordial compositions: only containing H, He and traces of Li.
Population III Stars

Theory predicts the existence of Population III (PopIII) stars:

★ First stars to form in the Universe.
★ Primordial compositions: only containing H, He and traces of Li.
★ Presumed to be very Massive \(\langle M_\star \rangle \gtrsim 100 \, M_\odot \)
Population III Stars

Theory predicts the existence of Population III (PopIII) stars:
★ First stars to form in the Universe.
★ Primordial compositions: only containing H, He and traces of Li.
★ Presumed to be very Massive \(\langle M_\star \rangle \gtrsim 100 \, M_\odot \)
★ Different IMF to PopI/PopII stars?
Theory predicts the existence of Population III (PopIII) stars:

- First stars to form in the Universe.
- Primordial compositions: only containing H, He and traces of Li.
- Presumed to be very Massive ($\langle M^\star \rangle \gtrsim 100 \, M_\odot$)
- Different IMF to PopI/PopII stars
Theory predicts the existence of Population III (PopIII) stars:

- First stars to form in the Universe.
- Primordial compositions: only containing H, He and traces of Li.
- Presumed to be very Massive ($\langle M^\star \rangle \gtrsim 100 M_\odot$).
- Different IMF to PopI/PopII stars.

Population III Stars

![Graph showing the mass function of PopIII stars compared to PopI and PopII stars.](image)
Theory predicts the existence of Population III (PopIII) stars:

★ First stars to form in the Universe.
★ Primordial compositions: only containing H, He and traces of Li.
★ Presumed to be very Massive ($\langle M \rangle \gtrsim 100 \, M_\odot$).
★ Different IMF compared to Pop I/Pop II stars.

Population III Stars
Population III Stars

Theory predicts the existence of Population III (PopIII) stars:
★ First stars to form in the Universe.
★ Primordial compositions: only containing H, He and traces of Li.
★ Presumed to be very Massive \(\langle M_\star \rangle \gtrsim 100 M_\odot \)
★ Different IMF to PopI/PopII stars?
★ Not found in the present day Universe
Population III Stars

Theory predicts the existence of Population III (PopIII) stars:

★ First stars to form in the Universe.
★ Primordial compositions: only containing H, He and traces of Li.
★ Presumed to be very Massive \(\langle M_\star \rangle \gtrsim 100 M_\odot \)
★ Different IMF to PopI/PopII stars?
★ Not found in the present day Universe
★ Yet to be observed
Population III Stars

Theory predicts the existence of Population III (PopIII) stars:

★ First stars to form in the Universe.
★ Primordial compositions: only containing H, He and traces of Li.
★ Presumed to be very Massive \(\langle M_\star \rangle \gtrsim 100 \, M_\odot \)
★ Different IMF to PopI/PopII stars?
★ Not found in the present day Universe
★ Yet to be observed
★ Needed for galaxy evolution (i.e. to produce metals for future star formation) theories
★ Due to large mass, Pop. III stars have the potential to completely ionise He.
Signature of Pop. III Stars: He\(\text{II}\)\(\lambda\)1640

★ Due to large mass, Pop. III stars have the potential to completely ionise He.
Due to large mass, Pop. III stars have the potential to completely ionise He.

HeIIλ1640 recombination line possible signature.

SEDs from Zackrisson et al., 2016
Signature of Pop. III Stars: HeIIλ1640

★ Due to large mass, Pop. III stars have the potential to completely ionise He.

★ HeIIλ1640 recombination line possible signature.

★ HARMONI on the ELT maybe able to detect this signature at a range of different redshifts.

SEDs from Zackrisson et al., 2016
Due to large mass, Pop. III stars have the potential to completely ionise He.

*HeII*λ1640 recombination line possible signature.

HARMONI on the ELT maybe able to detect this signature at a range of different redshifts.

Other objects can produces this line (e.g. AGN & SNe)

SEDs from Zackrisson et al., 2016
Signature of Pop. III Stars: HeIIλ1640

★ Due to large mass, Pop. III stars have the potential to completely ionise He.
★ HeIIλ1640 recombination line possible as signature.
★ HARMONI on the ELT maybe able to detect this signature at different redshifts.
★ Other objects can produce this line (e.g. AGN & SNe).

SEDs from Zackrisson et al., 2016
First light general purpose Integral Field Spectrograph for ELT

V-K (0.45 – 2.45\(\mu\)m) spectral coverage

R=3500, 7000, 17000 resolutions

60, 20, 10 & 4 mas pixel scales

NoAO/LTAO/SCAO correction

206x152 pixel field of view (image slicer with 32000 spaxels)
First light general purpose

Instrument

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Cube</td>
<td>(None)</td>
</tr>
<tr>
<td>Output Dir</td>
<td>Output_cubes</td>
</tr>
<tr>
<td>DIT [s]</td>
<td>900</td>
</tr>
<tr>
<td>NINT</td>
<td>1</td>
</tr>
<tr>
<td>X Scale [mas]</td>
<td>20</td>
</tr>
<tr>
<td>Y Scale [mas]</td>
<td>20</td>
</tr>
<tr>
<td>Grating</td>
<td></td>
</tr>
</tbody>
</table>

Telescope

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescope</td>
<td></td>
</tr>
<tr>
<td>AO Mode</td>
<td></td>
</tr>
<tr>
<td>Zenith Seeing [arcsec]</td>
<td>0.67</td>
</tr>
<tr>
<td>Zenith Angle [deg]</td>
<td>0</td>
</tr>
<tr>
<td>User PSF (replaces AO choice)</td>
<td>(None)</td>
</tr>
<tr>
<td>Telescope Temperature [K]</td>
<td>280.5</td>
</tr>
</tbody>
</table>

Miscellaneous

- Subtract Background: false
- Return Object Cube: false
- Return Transmission Cube: false
- No. of processors (1-32): 31
- Noise Seed: 0
- Set Spec Samp [A/pix]: 0
- Additional PSF Blur [mas]: 0

(image slicer with 32000 spaxels)

All of which is simulated with HSIM (see Zieleniewski et al., 2015)
First light general purpose Instrument

HARMONI wavelength range: \(0.45 \leq \lambda \leq 2.45\mu m\)

(image slicer with 32000 spaxels)

All of which is simulated with HSIM (see Zieleniewski et al., 2015)
First light general purpose

HARMONI wavelength range: $0.45 \leq \lambda \leq 2.45\mu m$

HeII$\lambda 1640$ for $3 \leq z \leq 10 \rightarrow 0.656 \leq \lambda \leq 1.8\mu m$

(image slicer with 32000 spaxels)

All of which is simulated with HSIM (see Zieleniewski et al., 2015)
NewHorizon Simulation

- New cosmological Hydrodynamical + N-Body simulation
- Run from $z \sim 45$ to $z \sim 0.7$ with a volume of 20MPc
- Use the Adaptive Mesh Refinement code RAMSES (Teyssier, 2002).
- Includes: Gas, Dark Matter, Stars particles, Black Holes, star formation, stellar feedback and AGN feedback.
- It has a maximum spatial resolution of $\Delta x \sim 35\text{pc}$ and a mass resolution of $2 \times 10^5 M_\odot$
- See Dubois et al., in prep and references within

Image credit: Y. Dubois for the NewHorizon collaboration

10 Comoving Mpc
1) Run grid of CLOUDY simulations using the predicted SEDs
Modelling Observations of Pop. III stars

1) Run grid of CLOUDY simulations using the predicted SEDs

2) Select galaxies from the NewHorizon Simulation

* stars in the simulation are in fact star particles with mass of $10^4 \lesssim M_\star \lesssim 10^5 M_\odot$
Modelling Observations of Pop. III stars

1) Run grid of CLOUDY simulations using the predicted SEDs
2) Select galaxies from the NewHorizon Simulation

★ >50% Pop. III stars

* stars in the simulation are in fact star particles with mass of \(10^4 \lesssim M_* \lesssim 10^5 M_\odot\)
Modelling Observations of Pop. III stars

1) Run grid of CLOUDY simulations using the predicted SEDs
2) Select galaxies from the NewHorizon Simulation

★ >50% Pop. III stars
★ Half Mass Radius < 1kpc

* stars in the simulation are in fact star particles with mass of $10^4 \lesssim M_* \lesssim 10^5 M_\odot$
Modelling Observations of Pop. III stars

1) Run grid of CLOUDY simulations using the predicted SEDs

2) Select galaxies from the NewHorizon Simulation

★ >50% Pop. III stars
★ Half Mass Radius < 1kpc
★ Mean Pop. III age < 2×10^6 Myr

* stars in the simulation are in fact star particles with mass of $10^4 \lesssim M_* \lesssim 10^5 M_\odot$
Modelling Observations of Pop. III stars

1) Run grid of CLOUDY simulations using the predicted SEDs
2) Select galaxies from the NewHorizon Simulation
3) Identify each star* as either PopIII or PopII

★>50% Pop. III stars
★Half Mass Radius < 1kpc
★Mean Pop. III age < 2×10^6 Myr

* stars in the simulation are in fact star particles with mass of $10^4 \lesssim M_\star \lesssim 10^5 M_\odot$
Modelling Observations of Pop. III stars

1) Run grid of CLOUDY simulations using the predicted SEDs
2) Select galaxies from the NewHorizon Simulation
3) Identify each star* as either PopIII or PopII
4) Combine CLOUDY runs with NewHorizon to produce observable objects.

* stars in the simulation are in fact star particles with mass of $10^4 \lesssim M_* \lesssim 10^5 M_\odot$
1) Run grid of CLOUDY simulations using the predicted SEDs
2) Select galaxies from the NewHorizon Simulation
3) Identify each star* as either PopIII or PopII
4) Combine CLOUDY runs with NewHorizon to produce observable objects.

* stars in the simulation are in fact star particles with mass of $10^4 \lesssim M_\star \lesssim 10^5 M_\odot$
1) Run grid of CLOUDY simulations using the predicted SEDs
2) Select galaxies from the NewHorizon Simulation
3) Identify each star* as either PopIII or PopII
4) Combine CLOUDY runs with NewHorizon to produce observable objects.
5) Observe the simulation using HSIM

* stars in the simulation are in fact star particles with mass of $10^4 \lesssim M_\star \lesssim 10^5 M_\odot$
Observing Pop. III Stars
Recovered Galaxy Spectrum

White Dashed Contour: \(\Sigma_{\star} \geq 1 \, M_\odot \)

White Solid Contour: \(\Sigma_{\star} \geq 100 \, M_\odot \)

Grisdale et al., in prep
Recovered Galaxy Spectrum

White Dashed Contour: $\Sigma_* \geq 1 M_\odot$

White Solid Contour: $\Sigma_* \geq 100 M_\odot$

Cyan Dashed Contour: $\Sigma_{\text{gas}} \geq 10^{1.5} M_\odot$

Cyan Solid Contour: $\Sigma_{\text{gas}} \geq 10^{2.5} M_\odot$

Grisdale et al., in prep
Recovered Galaxy Spectrum

Heλ1640
FWHM = 29.331 km s$^{-1}$
$F_{\text{peak}}/F_{\text{cont.}} = 54.194$

White Dashed Contour: $\Sigma_\star \geq 1 \, M_\odot$
White Solid Contour: $\Sigma_\star \geq 100 \, M_\odot$
Cyan Dashed Contour: $\Sigma_{\text{gas}} \geq 10^{1.5} \, M_\odot$
Cyan Solid Contour: $\Sigma_{\text{gas}} \geq 10^{2.5} \, M_\odot$

Grisdale et al., in prep
Can HeII 1640 be observed?

Grisdale et al., in prep
Can HeII1640 be observed?

10 Hour observation with HSIM

Grisdale et al., in prep
Can HeII1640 be observed?

He\(\lambda\)1640
FWHM = 29.331 km s\(^{-1}\)
\(F_{\text{peak}}/F_{\text{cont.}} = 54.194\)

Grisdale et al., in prep
Can HeII1640 be observed?

FWHM = 111.503 km s\(^{-1}\)

\(N_{\text{peak}}/N_{\text{cont.}} = 13.344\)

Spaxel Scale : 10 \(\times\) 10

Grisdale et al., in prep
Observations at Multiple Redshifts

G1, z = 10
FWHM = 119.328 km s\(^{-1}\)
\(N_{\text{peak}}/N_{\text{cont.}} = 5.591\)
Spaxel Scale : 10 \(\times\) 10

G2, z = 9
FWHM = 128.332 km s\(^{-1}\)
\(N_{\text{peak}}/N_{\text{cont.}} = 118.065\)
Spaxel Scale : 10 \(\times\) 10

G3, z = 8
FWHM = 198.194 km s\(^{-1}\)
\(N_{\text{peak}}/N_{\text{cont.}} = 5.553\)
Spaxel Scale : 10 \(\times\) 10

G4, z = 7
FWMH = 118.065 km s\(^{-1}\)
\(N_{\text{peak}}/N_{\text{cont.}} = 5.591\)
Spaxel Scale : 10 \(\times\) 10
Observations at Multiple Redshifts

- **G5, \(z_6 \)**
 - FWHM = 126.055 km s\(^{-1} \)
 - \(N_{\text{peak}}/N_{\text{cont.}} = 14.701 \)
 - Spaxel Scale: 10 × 10

- **G6, \(z = 5 \)**
 - FWHM = 176.890 km s\(^{-1} \)
 - \(N_{\text{peak}}/N_{\text{cont.}} = 1.337 \)
 - Spaxel Scale: 20 × 20

- **G7, \(z = 4 \)**
 - Spaxel Scale: 20 × 20

- **G8, \(z = 3 \)**
 - FWHM = 103.918 km s\(^{-1} \)
 - \(N_{\text{peak}}/N_{\text{cont.}} = 4.236 \)
 - Spaxel Scale: 20 × 20
Impact of IMF
Impact of IMF

\[\Phi(M) \]

\[\Phi M[M_\odot] \]

- PopIII.1
- PopIII.2
- PopIII.K & PopII.K
★ 6 of 8 galaxies still produce HeII\(\lambda 1640\) but in all cases the line strength is weaker.
Impact of IMF: PopIII.2

★ 6 of 8 galaxies still produce He\text{II}λ1640 but in all cases the line strength is weaker.

★ Only 4 of the 8 are now observable.
Impact of IMF: PopIII.2

G1, $z = 10$
FWHM = 137.136 km s$^{-1}$
$N_{\text{peak}}/N_{\text{cont.}} = 3.401$
Spaxel Scale: 10×10

G2, $z = 9$
FWHM = 116.580 km s$^{-1}$
$N_{\text{peak}}/N_{\text{cont.}} = 5.538$
Spaxel Scale: 10×10

G3, $z = 8$
FWHM = 183.340 km s$^{-1}$
$N_{\text{peak}}/N_{\text{cont.}} = 2.482$
Spaxel Scale: 10×10

G5, $z = 6$
FWHM = 112.869 km s$^{-1}$
$N_{\text{peak}}/N_{\text{cont.}} = 29.941$
Spaxel Scale: 10×10
Some galaxies produce extremely weak emission lines.
★ Some galaxies produce extremely weak emission lines.
★ However none are observable.

Impact of IMF: PopIII.K

\[
\phi(M) = \begin{cases}
10^3 & \text{for PopIII.1} \\
10^2 & \text{for PopIII.2} \\
10^0 & \text{for PopIII.K & PopII.K}
\end{cases}
\]
Detection Requirements

\[F_{\text{peak}} \geq 10^{-16} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2} \]
Detection Requirements

- $F_{\text{peak}} \geq 10^{-16} \text{erg s}^{-1} \text{cm}^{-2} \text{arcsec}^{-2}$
- $F_{\text{peak}} / F_{\text{cont.}} > 1.4$
Detection Requirements

★ $F_{\text{peak}} \geq 10^{-16} \text{erg s}^{-1} \text{cm}^{-2} \text{arcsec}^{-2}$
★ $F_{\text{peak}} / F_{\text{cont.}} > 1.4$
★ $20 \leq \text{FWHM} \leq 100 \text{km s}^{-1}$
Detection Requirements

- \(F_{\text{peak}} \geq 10^{-16} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2} \)
- \(F_{\text{peak}}/F_{\text{cont.}} > 1.4 \)
- \(20 \leq \text{FWHM} \lesssim 100 \text{ km s}^{-1} \)

In all cases, HeII\(\lambda 1640 \) detection will require target candidates from preceding observations.
Summary

Take aways:

★ Using High-res cosmological simulations, and HSIM it is possible to model observations of the PopIII for a given IMF and set of SEDs.

★ If the IMF of Pop. III stars is top heavy they will be detectable in observations via the HeII$\lambda 1640$ emission line for $3 \leq z \leq 10$.

★ If Pop. III stars follow a “traditional” IMF they are unlikely to be observed via the HeII$\lambda 1640$ emission line at any z.

★ Morphology of such galaxies is unlikely to be resolved.

★ Emissions form galaxies need to have $F_{\text{peak}} \geq 10^{-16} \text{erg s}^{-1} \text{cm}^{-2} \text{arcsec}^{-2}$, $F_{\text{peak}}/F_{\text{cont.}} > 1.4$ and $20 \leq \text{FWHM} \leq 100 \text{km s}^{-1}$ to be detectable.

Still to come:

★ “Observing” HeII$\lambda 1640$ in multiple galaxies at a given redshifts. Does Size/morphology etc. matter?

★ What impact does AGN have on the Pop. III signal.

★ Will observations provide constraints on PopIII IMFs?
Near-IR Spectroscopy with the ELTs
21-24 Sep 2020
Dept of Physic sOxfor d
Save the date!

Science cases & simulations

High-z SNe: Boussinou et al 2018

CGM: Augustin et al, MNRAS acc

Resolved Stellar pops: Gonzalez

High-z Kinematics: Kendrew et al. 2016
Richardson et al. subm

For details sign up to https://forms.gle/rdha7VDjtRdUYMUN8