

Imaging the high redshift universe with MICADO on the ELT

Ric Davies

Max Planck Institute for Extraterrestrial Physics, Germany

on behalf of the MICADO consortium in Germany, France, Netherlands, Austria, Italy and at ESO

- MICADO the Instrument
- ✤ Galaxy Evolution at high redshift
- ✤ Galactic Archaeology
- Spectroscopy

NSTITUT FÜR ASTROPHYSIK GÖTTINGEN

1.1.1 1 1 1 1

MICADO & MAORY

Stand-alone phase with just SCAO during initial operations.

Long term operation with MAORY (LGS-MCAO, & keeping SCAO).

MAORY: project led by INAF, uses 4-6 LGS and up to 3 NGS to provide uniform AO correction over full MICADO field.

-> talk by P. Ciliegi this afternoon

Key Capabilities

MICADO will be used with the MAORY system to provide:

0.8-2.4µm with 30 broad/narrow filters 1.5 & 4mas pixels for 19" & 51" FoV at 6-12mas □ Imaging Similar sensitivity to JWST, and 6× better resolution 10-50µas precision anywhere in the field □ Astrometric imaging 10μ as/yr = 5km/s at 100 kpc after only a few years focal & pupil plane coronagraphs High Contrast angular differential imaging imaging small inner working angle for compact sources □ Spectroscopy fixed configuration for 0.84-1.48µm & 1.48-2.46µm R ~ 20000 for point sources (R ~ 10000 across slit)

Inside MICADO

189mm, 50.5" (4mas/pix), 19" (1.5mas/pix)

HRI High Resolution Imager 1.5 mas imager (4 fixed mirrors)

LRI

Low Resolution Imager 4 mas imager (2 flat fold mirrors)

SPE Spectroscopy (2 gratings)

PIM Pupil Imager (2 mirrors + 1 lens)

MICADO Science Themes

- Potential to address a large number of science topics
- Science Report focus is on themes where MICADO can make major progress:
 - Dynamics of dense stellar systems,
 - Black holes in galaxies and the centre of the Milky Way,
 - Formation and evolution of galaxies in the early universe,
 - Star formation history of galaxies through resolved stellar populations,
 - Planets and planet formation,
 - The solar system.

Galaxy Evolution with MICADO

HUDF 6 arcmin² ~120 log(M $_*/M_{\odot}$)>9 z=1-4 ~6 log(M $_*/M_{\odot}$)>11 z=1-4 ~12 z>8

GOODS-S 150 arcmin² ~3000 log(M_{*}/M_{\odot})>9 z=1-4 ~150 log(M_{*}/M_{\odot})>11 z=1-4 ~300 z>8

> MICADO 0.7 arcmin² ~15 log(M_{*}/M_{\odot})>9 z=1-4 ~0.7 log(M_{*}/M_{\odot})>11 z=1-4 ~1.5 z>8

F160W

HUDF 2014 NASA Release 14-151 / STScI Release 2014-27

UV - V R - Y J - H

814 HST orbits, ACS+WFC3

Structure of high-z Galaxies

Spatial resolution

Order of magnitude gain in resolution from 1 kpc- to 100 pc-scale at z>1. 6-12 mas ~ 50-100 pc matches seeing limited scale for Virgo cluster galaxies.

- JWST will select samples & measure basic galaxy properties.
- MICADO will trace stellar continuum & provide detailed structure.

Synergies with ALMA, HARMONI, etc.

combined JHK images of local templates (BVR bands) shifted to z=2 (top) and z=1 (bottom), with R_{eff} =0.5" and M_V =-21; 5hrs integration.

Structure of high-z Galaxies

gal21

IJH

10h

0.2"

1.5kpc

Key science drivers at z > 1

- Resolving disks, bulges, clumps. •
- Characterising SSCs.
- Resolving compact galaxies at z>
- Massive ETG progenitors in dens •
- QSO host properties.
- Structure of lensed galaxies on <
- The first galaxies. •
- Substructure of DM halos to ~10⁻¹VI_{sun}.

SimCADO simulations https://simcado.readthedocs.io

Based on HUDF source catalog with additional clump and cluster populations. MICADO, 10hrs each on IJH bands.

Cut-out size in main field:

Courtesy of N.M. Förster Schreiber

Galaxy Evolution: Archaeology

Galaxy Evolution: Archaeology

SCAO for initial operations - an example

The structure of lensed Lyman-α absorbers/emitters at 4 < z < 5 (courtesy of G. Caminha & K. Caputi)

Cluster CL0102 (El Gordo):

- 4 spectroscopically confirmed Ly α emitters/absorbers at z=4.3, within ~8" of a star with H_{AB} = 15.6 mag & Gaia G = 15.9 mag. (Caminha et al. 2019)
- Even with lensing magnification, HST resolution of 90mas is insufficient to resolve morphology.

ID3-b Highest magnification of 10 Observed magnitude $H_{AB} = 23.6$

SCAO for initial operations - an example

The structure of lensed Lyman-α absorbers/emitters at 4 < z < 5 (courtesy of G. Caminha & K. Caputi)

Question: can clumpy star-forming regions be resolved in ID3-b?

- SimCADO simulations: 2-hr integration of sources based on size & total flux in ID3-b.
- MICADO can easily distinguish clumpy and smooth distributions.
- Clumps with K_{AB} < 29.5 can be detected for all sizes considered in range 3-600pc; small fainter clumps can also be detected.
- Lensing in ID3-b allows one to detect structures to 10-20pc scales in K-band.

Sensitivity

• Depends on:

AO performance; nominal Strehl for MCAO 40% / 18% / 6% for K / H / J band ambient temperature (warm telescope; AO cooling) how flux is measured (e.g. aperture vs PSF fitting) source structure location in field for SCAO (note MCAO is uniform)

• Real numbers can vary by 1mag either way

	FWHM mas	1hr, б AB mag	5hr, o AB mag
Ks	11	28.2	29.0
Н	8	28.6	29.5
J	6	27.7	28.5

Empirical vs Reconstructed PSF

How many stars in the field?

- On average, ~3 stars / sq. arcmin for K_{AB} < 27 mag in classical deep fields.
- Would be well detected in integrations > 1 hr, so could be used as PSF reference (for MCAO).
- But MICADO field is 0.7 $arcmin^2$, so 35-45% chance there is ≤ 1 star in a pointing.
- PSF reconstruction is mandatory and is part of MICADO project.

Spectroscopy

Purpose

• Large simultaneous wavelength coverage at high spectral resolution, optimized for point sources.

Characteristics

- Fixed single configuration: order sorting filters switch between options of 1.48 - 2.46 μm, 1.15 – 1.35 μm, & 0.84 - 1.48 μm.
- Slit width: narrowest is 16mas (60µm);
- Slit length: 15" for HK and J-bands, 3" for IzJ band.
- Resolution: 10000 integrated across slit; 20000 for point sources.
- Operationally: default alignment along parallactic angle (ADC is after the slit); also option for user to choose position angle

Spectral trace layout

MICADO and JWST

MICADO & JWST have similar sensitivity, but MICADO will resolve structures that JWST cannot detect.

In crowded fields, resolution gives an *effective* sensitivity gain of ~3mag wrt JW*ST*, *allowing* MICADO to probe regions where *JW*ST cannot reach.

MICADO will achieve astrometric measurements ~6 times faster, or for objects ~6 times more distant, than JWST.

Summary

- MICADO will be a first light instrument for the ELT
- It will work with the MAORY adaptive optics system.
- It'll do imaging at 6-12mas resolution over a 50" field to J/H/K ~ 29 mag AB, R~20000 spectroscopy covering H & K simultaneously, (also astrometric & high contrast imaging).
- It'll use SCAO for initial operations, & MCAO, providing uniform correction over the field.
- It'll provide the user with a reconstructed PSF reference.
- Try out SimCADO and see what it can do for you.

