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Using gravitational telescopes to probe
the faint and distant Universe

Gabriel Bartosch Caminha, et al.

Abell S1063 MACS J0416 MACS 1149

Hubble Frontier Fields CLASH-VLT

MACS J1206
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  MUSE observations of lensing clusters

blank 
fields

Strong lensing fields (HFF)
Density of Lyman-break galaxies
Bouwens+2017

● Faint and high-z sources
➔ Important sources for the cosmic reionization and to understand of star formation in the early and 

faint Universe
● Narrow area, but deep →  Faint/common sources; complementary to works on non lensing fields

➔ We probe around 5% of the original field of view for z=5 and μ > 10
➔ log Lyα[erg/s] > 40 – 41, for regions with erg/s] > 40 – 41, for regions with μ ~ 5-10

➔ In regions with extreme magnifications (μ > 50) we can reach fainter detections
● Highly precise magnification maps can be achieved by combining deep MUSE spectroscopy in the 

core and high resolution photometric data HST.

Over 100 spectroscopic confirmations at z>3
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Galaxy cluster strong lensing (S.L.)
➔ Galaxy cluster strong lensing (SL):

➔ Magnification of background sources over “large” volumes
➔ Can overcome blank fields in terms of S/N (magnification     against                   )

➔ Accurate SL models need extensive spectroscopy → constrain the mass distribution

MACS J0416
Hubble Frontier FIelds
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Galaxy cluster strong lensing (S.L.)

The Multi Unit Spectroscopic Explorer (MUSE) 
Integral field spectroscopy over an area of 1 sq-arcmin

● No source pre-selection over this large are
Wavelength coverage of 4750Å – 9350Å

● Can confirm sources at redshifts out to z=6.7
Spatial pixel size of 0.2 arcsec, psf limited 0.6–1.0 arcsec

● Can spatially resolve emission lines
Spectral resolution of ~2.3 Å

MUSE
Pseudo color image

➔ Galaxy cluster strong lensing (SL):
➔ Magnification of background sources over “large” volumes
➔ Can overcome blank fields in terms of S/N (magnification     against                   )

➔ Accurate SL models need extensive spectroscopy → constrain the mass distribution

MUSE 20 hr exp. Time
MDLF P.I. Vanzella

MUSE 10 hr exp. Time
P.I. Bauer
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Galaxy cluster strong lensing (S.L.)

MUSE
Pseudo color image

➔ Galaxy cluster strong lensing (SL):
➔ Magnification of background sources over “large” volumes
➔ Can overcome blank fields in terms of S/N (magnification     against                   )

➔ Accurate SL models need extensive spectroscopy → constrain the mass distribution

● Multiple images from the same source are the 
constraints of the SL model

● Members selection based on extensive 
spectroscopy

● Modelling using lenstool
see Caminha+2017 A&A 600, A90
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 Increased number of strong lensing constraints

Grillo+ 2015 (ApJ, 800, 38)
● We use 10 multiple image families with 

spectroscopic confirmation from CLASH-VLT
● 15 families including GLASS measurements
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 Increased number of strong lensing constraints

Grillo+ 2015 (ApJ, 800, 38)
● We use 10 multiple image families with 

spectroscopic confirmation from CLASH-VLT
● 15 families including GLASS measurements

Caminha+ 2017 A&A 600, A90
● 37 multiple image families
● Free of missidentification of multiple images
● We use only spectroscopically confirmed

GLASS

A2744
Mahler+2017

Lagattuta+2017
Single MUSE 
pointing

M1206
Caminha+2017b

Caminha+2016

A370
Lagattuta+2019
MUSE 2x2 mosaic

M0416
Caminha+2017a    
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New deep MUSE observations confirmed 11 new families
Model can predict the position of all 137 multiple images 
with a precision of ~0.5 arcseconds
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SL model improvements
2015: 15 spectroscopically confirmed multiply lensed systems 

2017: 37 spectroscopically confirmed multiply lensed systems
+ improved membership selection
+ misidentification of multiple images removed

z=4
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 Robust measurements of magnification factors
ID14 is a system at z=3.22 with 6 confirmed multiple images
    14a,b,c are highly magnified (μ>20)

μ=20.1

Δm=3.3

When propagating the magnification of the less magnified
image we have:                         
Directly from the SL model: 

Predictions are under control when we have a large number of 
model constraints (multiple images)

Meneghetti+2017 (MNRAS, 472, 3177)

Low magnified regions are less biased 
and have smaller intrinsic scatter

Vanzella+2017
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Observed                          , intrinsic
No ly-alpha emission from the stellar continuum (HST detection) or other emission/abs lines

    Ly-break galaxies and Ly-alpha emission
Intrinsically faint and multiply lensed Lyman-break galaxy at z=4.116
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    Ly-break galaxies and Ly-alpha emission
Intrinsically faint and multiply lensed Lyman-break galaxy at z=4.116
Associated to extended Ly-alpha emission and another galaxy at the same redshift

Observed                          , intrinsic
No ly-alpha emission from the stellar continuum (HST detection) or other emission/abs lines

What is the mechanism responsible for the Ly-alpha 
emission in the nebula?
● Fluorescence by Lyman continuum escaping in the 

transversal direction, or
● Star formation in situ.
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 Lyman-α nebula around star forming galaxies

Source plane mapping- HST and MUSE

caustic

Z=3.04, Caminha+2017, A&A, 607, 93C

Observed                                   , for 11a and G1 respectively.
With HST+lensing we resolve clumps of ~2 kpc
The total stellar mass of each component (G1, 11 and 11-2) is                                

MACS J1206

Lyman-break galaxies associated with Ly-alpha extended (off-centre) emission 
are relatively common
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Lensing magnification increases the S/N by a factor of 5

Very high Ly-alpha EW (> 400 Å) likely to be generated by 
fluorescence, but scatter of Lya photos is also possible

Detection of OIII and HeII (broad?), CIV P-Cygni profile
● Stellar winds from very massive stars

Detection of strong OIII (5008 Å) emission (Christensen+2012)
● Many similarities with known Ly-continuum emitters (< 912 Å, see 

Vanzella+2019) but we have no detection in the F336W HST filter

Possible LyC leakage in the transversal direction?

JWST (with NIRspec/cam and MIRI) will be able to probe the spatial 
distribution of H-alpha (fluorescence X scatter)

Probe the stellar population with ELT and Balmer lines with JWST

 Lyman-α nebula around star forming galaxies

caustic

Caminha+ in prep.
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    MICADO (SCAO) to detect SF clumps
Group of galaxies at z=4.3, spectroscopically confirmed with MUSE.

Good candidate to be targeted by MICADO (SCAO).

The observed sizes are a factor of ~3.3 smaller in 
a non-lensing field

SimCADO simulation for 2 hr exposure time



G. B. Caminha Extremely Big Eyes on the Early Universe (Italy, September/2019) 17

● We have control of the lensing effect to recover intrinsic properties of lensed sources
➔ See e.g. Caminha+2019 arXiv:1903.05103 (A&A accepted) for the work on the SL models and 

MUSE data
➔ We are building a large sample of lensing clusters with good models, i.e. using extensive 

spectroscopy, that are providing targets to the new generation of telescopes

● In lensing fields with MUSE we are characterizing the UV part of the spectrum of sources at 
redshifts between 2.9 – 4.5 (higher S/N) and confirming with spectroscopy sources at z=5-6.7 from 
Lyman-alpha emission (faint sources) or Lyman break (bright sources or deep pointings)
➔ Are we observing Lyman-continuum photons escaping in preferred directions?
➔ Lessons learned at low z (< 6) are extremely valuable to explore the sources in the reionization 

epoch (6 < z < 10)

➔ With JWST we will easily access rest-frame optical lines for these system
➔ With ELT we can characterize the stellar population and the morphology of these systems

● Extend works on non lensing fields towards faint objects

Discussions
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