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Are disk galaxies In place in the
early universe?

NGC 4845
Image Credit: NASA/ESA/Hubble and S. Smartt
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IMAGES: Puech+ 08
MASSIV: Vergani+ 12
KLASS: Mason+ 17
KROSS: Stott+16
KMOS-3D: Wisnioski+ 15
SINS: Forster Schreiber+ 09
AMAZE: Gnerucci+ 11
KROSS: Harrison+ 17
KDS: Turner+ 17
Lensed: Jones+ 10,

Livermore+ 15
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s It safe to assume the velocity
gradients observed in high
redshift galaxies trace the
rotational motions of disks”



Synthetic Observations
of Hydro Simulations

simulated disk at z = 2
(VELA simulation suite)
N7

VELA Simulations: Ceverino+ 14



Synthetic Observations
of Hydro Simulations

post processing:
SUNRISE dust radiative transfer

« MAPPINGS Il
model for star-
forming regions

« 19 cameras placed
around central
galaxy

e R,
=
hoiseless hoiseless
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VELA Simulations: Ceverino+ 14
SUNRISE: Jonsson+ 06,10, Jonsson & Primack 10
MAPPINGS IlI: Groves+08



Synthetic Observations
of Hydro Simulations

post processing:
SUNRISE dust radiative transfer

« MAPPINGS Il
model for star- 1
forming regions 8.5 kpc (z = 2)
« 19 cameras placed
around central HST/WFC3 VLT/KMOS

galaxy

post-post processing: “
add surface brightness |
dimming, appropriate 0
noise, spectral and
spatial resolution

Seeing

VELA Simulations: Ceverino+ 14
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https://archive.stsci.edu/prepds/vela/

: : observational
Disk galaxies ) L.
as determined from intrinsic dlSk Crlterla

kinematic properties (Wisnioski+ 15; KMOS-3D)

1. continuous single V
gradient

2. VHavot > OHa

3. steepest V gradient
coincident with peak in o
map

4. aligned photometric and
Kinematic axes

5. steepest V gradient
coincident with continuum
center

Simons+ 19
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fraction of sightlines meeting
observational disk criteria

each point on this
plot is a simulated

' iteria 1, 2, 3 -
merger without a

disk

ideally, none of the
synthetic data
4_ would indicate
average angular separation at z = 2 they are disks (i.e.,
aresed they would lie
here)

Simons+ 19
see also e.qg., Rodrigues+ 17



fraction of sightlines meeting
observational disk criteria

0.8
0.6
0.4
0.2

0

Take home: mergers

masqguerade as disks in
low resolution kinematic

data (high resolution

using critq;

imaging helps, but does

not alleviate this

problem)
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Take home:
observed disk
fractions at z~2 need
only a small
correction (<15%) for
contamination by
unresolved mergers

observations
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Galaxy Major Merger Rate [Gyr ']
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The next
frontier:
resolved gas
Kinematics to
Z~0

need resolution
offered by 20 - 40 m
class facilities
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(0. 15 resolution)
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30 m AO-assisted
(0. 02 resolution)
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30 m AO-assisted

measuring coherence of (0- 02 reSOIUtlon)

kinematics (rotational R
motions, turbulence and gas velocity
winds) to ~100 pc

Q for theory: is this small -
enough to discriminate star-
formation feedback models?
to discriminate drivers of
supersonic turbulence (e.g.,
gravitational- versus SNe-
driven)?




Are disk galaxies Ih place in the
early universe?

NGC 4845
Image Credit: NASA/ESA/Hubble and S. Smartt



Are disk galaxies in place in the
early universe?

Observations favor a disruptive mode of galaxy
formation at early times.

e At z~2, less than one-third of star-forming galaxies have
Viot/Og > 3 (i.e., strong rotational support)

Synthetic observations of simulations indicate:

® merging galaxies masqguerade as disks in low-resolution kinematic data

® high merger rates at z > 3 necessitate resolution of extremely large
telescopes — along with a direct bridge to theoretical predictions
(through synthetic observations) to reliably interpret data and test
physical models



