NEARBY GALAXIES IN HIGH-Z SVR VEYS

Fernando Buitrago

I. Ferreras, A. Molaeinezhad, J. Román, I. Trujillo, S. Reis, L. Zhu, J. Falcón-Barroso, G. van de Ven, L. Kelvin, C. Conselice

Ciências ULisboa

instituto de astrofísica e ciências do espaço

mu(V) < 21.5

Mihos etal 2005

DATA REDUCTION MATTERS

HyperSuprimeCam Strategic Programme DR2 i-band data (Aihara+2019)

https://www.iac.es/proyecto/abyss/

Development of Massive Elliptical Galaxies

BIG

Development of Massive Elliptical Galaxies BIG Bang 1 billion years 1.5 billion years 2 billion years Merger 3 billion years Dusty starburst galaxy 5 billion years TODAY Quasar 13.7 billion years Compact galaxy Merging elliptical galaxy Accreted In-situ VS component component

Two phase formation scenario: inside-out growth

Great work by simulations: Hopkins+09, Oser+10, Hilz+13, Cooper+13, Zolotov+15, Wellons+16, etc; plenty of observational evidence: Bezanson+09, Van Dokkum+10, Trujillo+11, Huertas-Company+13, FB+14, Williams+14, Ferreras+14, and so many others

Massive ETGs should grow an extended stellar envelope across cosmic time

Development of Massive Elliptical Galaxies

BIG

Development of Massive Elliptical Galaxies

11.0 11.4 11.8 -2.0-1.0 0.0 1.0 log(Distance / Mpc) log(Galaxy mass)

Selection criteria: -> Stellar mass > $5 \times 10^{10} M_{\odot}$ -> $z_{spec} < 1$

=> Early-type galaxies down to 29 mag arcsec⁻² restframe at median redshift z = 0.65!!!

PROGRESSIVE DEVELOPMENT FOR ETG STELLAR HALOES OVER REDSHIFT

RELATIVE IMPORTANCE OF STELLAR HALOES FOR ETGS OVER REDSHIFT

Buitrago+17

RELATIVE IMPORTANCE OF STELLAR HALOES FOR ETGS OVER REDSHIFT

MASSIVE GALAXIES IN CANDELS @ Z < 0.5

-Center of the Abell 2029 cluster

 $-R_e = 64 \pm 12$ kpc (Fisher+1995)

-Searching for similar objects in KiDS with C. Tortora | Stellar populations w/ FADO by S. Reis and J.M. Gomes

New r_e = 42±4 kpc (but probably much less)

HST WFPC2 2-color composite

- Work in progress!
- Is this galaxy light or is it ICL?
- Fossil group? Cluster merger?

- Integrated mass 3.4 \pm 0.5 x 10¹² M $_{\odot}$
- If taking the Galaxy mass function at z = 0 (Baldry+2012)...

Is Λ CDM accounting for these objects?

MUSE FoV, PI Buitrago

NEW GENERATION TELESCOPES' CAPABILITIES

Provided an adequate data reduction, good observing strategy and good PSF knowledge Limiting Surface brightness given as 3σ detections in 10x10 arcsec boxes

• JWST

>30.5 mag arcsec⁻² (1h) and 31.8 mag arcsec⁻² (10h)

• Euclid

➢Wide survey: 28.7 mag arcsec⁻², Drilling fields: 29.7 mag arcsec⁻²

• LSST

≥26.5 (15 sec) => SDSS Stripe 82 for 25000 deg² each 3d!, 30.5 (3.5h)

• 30-m telescopes

>31.2 mag arcsec⁻² (1h) and 32.5 mag arcsec⁻² (10h)

• MESSIER spacecraft

➢ Whole sky: 34 mag arcsec⁻², Drilling fields: 36 mag arcsec⁻²

SUMMARY

- Massive elliptical galaxies grow stellar haloes to account for their size and mass evolution, and they host 5-20% of the stellar mass (vs < 5% for LTGs)
- Massive galaxies are priviledged testbeds for galaxy evolution and their different flavours imply (and help discerning) different physical mechanisms at play
- Next generation telescopes and surveys will systematically find many low- to intermediate-redshift galaxies, and LSB is key to fully understand galaxies (beware cosmological dimming!)

Fernando Buitrago, <u>fbuitrago@oal.ul.pt</u> – Rome 13-Sep-2019