Determining the Stellar Ages of the First Galaxies

Guido Roberts-Borsani

UNIVERSITY COLLEGE LONDON

with Richard Ellis & Nicolas Laporte

11th Sept. 2019, Extremely Big Eyes on the Early Universe, Rome

Searching for the first galaxies...

Credit: XDF team

Searching for the first galaxies...

The dropout technique has given us hundreds of candidates at z>6 with which to characterise the Reionisation Epoch.

see also: Oesch+2012, McLure+2013, Atek+2015, Bouwens+2015, Finkelstein+15, McLeod+2016, Livermore+2017

An alternative approach...

At high-z, Spitzer/IRAC bands probe the rest-frame optical. Strong nebular emissions lines (Ha, [OIII] 5007 Å and H β) can pollute the bands to produce a well-defined 3.6-4.5 μ m vs redshift relation.

Finkelstein+2013, Watson+2015, Oesch+2015, Zitrin+2015, Roberts-Borsani+15, Stark+17, Hoag+2017, Laporte+2017, Tamura+2019, Hashimoto+2019, Laporte+(2019, in prep.)

IRAC excess due to older stellar populations: MACSJ1149-JD1

F435W F606W F814W F105W F125W F140W F160W IRAC 1 IRAC 2

Zheng+2012,2017

VLT/X-SHOOTER + ALMA/BAND 7

• A bright, strongly amplified galaxy from CLASH/Frontier Fields with H₁₆₀~25 AB.

- Spectroscopic observations with ALMA ([OIII] 88µm) and VLT/X-Shooter (Lyman-a) place the galaxy at z=9.11.
- SED modelling and secure redshift suggest the IRAC-excess is due to a Balmer-break cause by older stellar population formed at z~15.

Is nebular emission the sole cause of IRAC-excess at z>7?

Spitzer/IRAC [3.6] and [4.5] micron bands boosted by different parts of the rest-frame optical spectrum: strong nebular emission lines or Balmer breaks?

see also: Labbé+2013, Smit+2015, Roberts-Borsani+2015

Luckily, we have spectroscopically-confirmed galaxies with IRAC-excesses due to both nebular line emission (EGSY8p7; Roberts-Borsani+2015, Zitrin+2015) and a Balmer break (JD1; Hashimoto+2018) to test this picture.

Roberts-Borsani, Ellis, Laporte (in prep.)

Luckily, we have spectroscopically-confirmed galaxies with IRAC-excesses due to both nebular line emission (EGSY8p7; Roberts-Borsani+2015, Zitrin+2015) and a Balmer break (JD1; Hashimoto+2018) to test this picture.

Roberts-Borsani, Ellis, Laporte (in prep.)

Luckily, we have spectroscopically-confirmed galaxies with IRAC-excesses due to both nebular line emission (EGSY8p7; Roberts-Borsani+2015, Zitrin+2015) and a Balmer break (JD1; Hashimoto+2018) to test this picture.

Roberts-Borsani, Ellis, Laporte (in prep.)

To explore this, we need SED models of various ages that self-consistently incorporate the evolution of stars, gas and metals, nebular emission, and dust production, over a large wavelength range (UV -> FIR/sub-mm). Introducing **Pégase3**.

for more details see Fioc et al. (2019)

- Looking at the colour evolution of an intense line emitter and Balmer break galaxy (masked lines).
- Assuming simple Pégase3 models with a Chabrier+2003 IMF, constant SFR, dust and different ages.
- Stellar ages of ~300-600 Myrs can reproduce IRAC colours at z>~8. Thus, the explanation of nebular emission lines as the main/sole source of boosting is perhaps not universal.
- <u>IMPORTANT</u>: This does not imply one or the other, likely to be a mixture of both!

Roberts-Borsani, Ellis, Laporte (in prep.)

Are older stellar populations prevalent?

Is JD1 an isolated case or are there either known galaxies with evolved stellar populations?

• A handful of candidates from photometry and SED fitting...

 3 high-z massive galaxies in a 50 Mpc (comoving) box...

We need JWST and EXTREMELY BIG EYES!!!

Telescope/Instrument	Wavelength coverage (µm)	Spectral Resolution
TMT/NIRES	1-5	R~100,000
ELT/METIS	2.9-14	R~900-100,000
JWST/NIRSpec	0.6-5.3	R~1,000-2,700

Such observations crucial to determine accurate stellar masses, stellar ages, and constraining the timing of Cosmic Dawn!

Summary & Conclusions

The arrival of 30m-class telescopes and JWST will aid to distinguish between the two scenarios and help constrain the timing of Cosmic Dawn.