Optically dark ALMA sources shed light on the formation of a large-scale structure at z~3.5

Lu**wenjia** Zhou^{1, 2}, D. Elbaz¹, M. Franco¹, T. Wang³, C. Schreiber⁴, L. Ciesla⁵

¹CEA-Saclay, France; ²Nanjing University, China; ³University of Tokyo, Japan; ⁴Oxford University, UK; ⁵LAM, France

ÉCOLE DOCTORALE

universite

PARIS-SACLAY

Cosmic Star Formation Density

Madau & Dickinson (2014)

Cosmic Star Formation Density

Madau & Dickinson (2014)

Cosmic Star Formation Density

Madau & Dickinson (2014)

Contribution to cosmic SFD

optically dark galaxies = 10x equivalently massive LBGs

protocluster galaxies: important/dominant contributors to cosmic SFD

Extremely Big Eyes on the Early Universe

Chiang et al. 2017

Ground-based

AzTEC	JCMT ASTE LMT (32 m) LMT (50 m)	19'' 29'' 9" 6"
Laboca	APEX	$19^{\prime\prime}$
ACT	ACT	54'' 69'' 98''
SPT	SPT	69″ 63″
Saboca	APEX	8″
GISMO	IRAM 30m	$24^{\prime\prime}$
Scuba-2	JCMT	15″ 7″

Casey et al. (2014)

Angular resolution !

Eyes on the Early Universe

Main catalog (19) + supplementary catalog (16) = 35 detections > 4.8 sigma 3.5~4.8 sigma

Six optically-dark galaxies out of 35 (17%)

Main catalog: AGS4, AGS11, AGS15, AGS17

Supplementary catalog: AGS24, AGS25

Six optically-dark galaxies out of 35 (17%)

Main catalog: AGS4, AGS11, AGS15, AGS17

Supplementary catalog: AGS24, AGS25

Follow-up: AGS4, AGS11, AGS15, AGS17, AGS24 all detected at 2mm

AGS4 and AGS17: emission lines

Franco et al. 2018:

z = 4.32 $M^* = 10^{11.45} M_{sun}$ (AGN, might slightly overestimated)

Extremely Big Eyes on the Early Universe

Franco et al. 2018: z = 4.32 $M^* = 10^{11.45} M_{sun}$ (AGN, might slightly overestimated)

Franco et al. 2018: z = 4.32 $M^* = 10^{11.45} M_{sun}$ (AGN, might slightly overestimated)

Extremely Big Eyes on the Early Universe

AGS24
z = 3.5
M* =
$$10^{11.26}$$
 M_{sun}

SFH varies:

delayed exponentially declining	11.26
exponentially declining	11.3
truncated	11.29
a second burst	11.27

Attenuation law varies:

SFH_DELAYED_FLEX + CALZETTI11.30SFH_DELAYED_FLEX + MAGPHYSlike11.58SFH_DELAYED_FLEX + CHARLOT&FALL 11.59

AGS24 z = 3.5 M* = $10^{11.26}$ M_{sun}

 $|q_{TIR}|$ (AGS24) = 2.09

$$q_{\text{TIR}} = \log\left(\frac{L_{\text{TIR}}}{3.75 \times 10^{12} \text{ Hz}}\right) - \log\left(\frac{L_{1.4 \text{ GHz}}}{\text{W m}^{-2} \text{ Hz}^{-1}}\right).$$

where L_{TIR} is total infrared Luminosity (8-1000 μ m), and

$$L_{1.4 \text{ GHz}} (\text{W Hz}^{-1}) = \frac{4\pi D_L^2}{(1+z)^{\alpha+1}} \left(\frac{1.4}{\nu}\right)^{\alpha} S_{\nu}.$$

Star-forming galaxies: radio spectral index α = -0.8 qTIR(z=3.5) = 2.16 +- 0.06 (Delhaize+2017)

X-ray: no counterpart in CDF-S 7Ms catalog

 $\begin{array}{ll} \text{AGS24} & \begin{array}{l} \text{no radio excess, no X-ray excess} \\ \Rightarrow \text{ no AGN (contaminate } M_{star}) \\ z = 3.5 & \Rightarrow \text{Most massive non-AGN @z>3} \\ \text{M*} = 10^{11.26} \ \text{M}_{sun} \end{array}$

q_{TIR} (AGS24) = 2.09

$$q_{\text{TIR}} = \log\left(\frac{L_{\text{TIR}}}{3.75 \times 10^{12} \text{ Hz}}\right) - \log\left(\frac{L_{1.4 \text{ GHz}}}{\text{W m}^{-2} \text{ Hz}^{-1}}\right).$$

where L_{TIR} is total infrared Luminosity (8-1000 μ m), and

$$L_{1.4 \text{ GHz}} (\text{W Hz}^{-1}) = \frac{4\pi D_L^2}{(1+z)^{\alpha+1}} \left(\frac{1.4}{\nu}\right)^{\alpha} S_{\nu}.$$

Star-forming galaxies: radio spectral index α = -0.8 qTIR(z=3.5) = 2.16 +- 0.06 (Delhaize+2017)

X-ray: no counterpart in CDF-S 7Ms catalog

Summary I.

ALMA detects the most massive galaxies in the early Universe

AGS11, 15, 17 within 2' from AGS24 12 arcmin²

VS.

GOODS-ALMA 69 arcmin²

-> 0.4% by chance

redshift distribution (grey):

11621 in GOODS-ALMA, 894 zspec

1370 at z = 3-4,94 zspec(56 zspec from <u>VANDELS</u>)

a spike at z~3.5

redshift

projected number density at z~3.5

AGS15 M* = $10^{10.66}$ M_{sun} z = 3.58

0 1 2 3 5 6 P(z) 0.30 f_{λ} [x10⁻¹⁹ erg/s/cm⁻²/A] 0.25 0.20 0.15 0.10 0.05 0.00 -0.05 -0.101 10 observed wavelength (um)

redshift

Candels 3818 $M^* = 10^{7.99} M_{sun} \frac{10^{9.63}}{2} = 0.68 \frac{3.47}{3}$

Franco et al. 2018

Extremely Big Eyes on the Early Universe

5

+1.5e2

Extremely Big Eyes on the Early Universe

Extremely Big Eyes on the Early Universe

Overdensity in GOODS-S:

- Straatman+16, ZFOURGE, fig.23
- Skelton+14, 3D HST, fig.24
- Franck & McGaugh 2016, CCPC-z34-002
- Forrest+17, fig.4:
 6 EELGs + 20 SELGs
 young, less massive, less dusty
 reionization

20 30

40

Ginolfi+17, fig.8

10

Declinat

25s 24.8 24.6 J2000 Right Ascension

Overdensity in GOODS-S:

- Straatman+16, ZFOURGE, fig.23
- Skelton+14, 3D HST, fig.24
- Franck & McGaugh 2016, CCPC-z34-002
- Forrest+17, fig.4:
 6 EELGs + 20 SELGs
 young, less massive, less dusty
 reionization
- Ginolfi+17, Candels 5001, zspec= 3.473, fig.8: a massive galaxy [log M_{star}=10.27] cosmic gaseous streams feeding

Summary II.

ALMA detected optically-dark galaxies trace a proto-cluster in formation at z~3.5

AGS24: candidate BCG of the proto-cluster

Summary

- Optically-dark galaxies are important contributors to the cosmic star formation density in the early Universe and tend to be associated with proto-clusters.
- Six optically-dark galaxy out of 35 detections in GOODS-ALMA
 - The most massive galaxies in GOODS-S at $z \ge 3.5$ (~ $10^{11.3} M_{sun}$)
 - Potential tracers of distant proto-clusters at z~3.5
 - AGS24: candidate BCD in the proto-cluster