Exploiting galaxy-21cm synergies to shed light on the Epoch of Reionization

Pratika Dayal

Exploiting galaxy-21cm synergies to shed light on the Epoch of Reionization

Pratika Dayal

Outstanding challenges

Linked to galaxy formation

- Minimum mass to which galaxies can form stars
- The star formation rates of early galaxies
- Escape of ionizing radiation
- Dust enrichment of early galaxies
- GW from the early Universe

Linked to reionization

- External (UV) feedback impact
- Key reionization sources (galaxies, BHs or..?)
- Using combination of galaxy and large scale data to constrain reionization topology and history in era of 21cm cosmology

Linked to cosmology

How can early galaxies be used to probe the cosmological model, specially in context of Dark Matter models

Outstanding challenges

Linked to galaxy formation

- Minimum mass to which galaxies can form stars
- The star formation rates of early galaxies
- Escape of ionizing radiation
- Dust enrichment of early galaxies
- GW from the early Universe

Linked to reionization

- External (UV) feedback impact
- Key reionization sources (galaxies, BHs or..?)
- Using combination of galaxy and large scale data to constrain reionization topology and history in era of 21cm cosmology

Linked to cosmology

How can early galaxies be used to probe the cosmological model, specially in context of Dark Matter models

Key collaborators and collaborations

Volker Bromm: University of Texas at Austin, USA Benedetta Ciardi: Max Planck Institute for Astrophysics, Germany Tirthankar Choudhury: National Centre for Radio Astronomy, India James Dunlop: Institute for Astronomy, U.K. Andrea Ferrara: Scuola Normale Superiore, Italy Stefan Gottloeber: Leibniz institute for Astrophysics, Germany Anne Hutter: Swinburne Institute of Technology, Australia Hiroyuki Hirashita: ASIAA, Taiwan Umberto Maio: Leibniz institute for Astrophysics, Germany Antonella Maselli: University of Barcelona, Spain Andrei Mesinger: Scuola Normale Superiore, Italy Volker Mueller: Leibniz institute for Astrophysics, Germany Noam Libeskind: Leibniz institute for Astrophysics, Germany Fabio Pacucci: Kapteyn Institute, The Netherlands Catherine Trott: ICRAR, Perth, Australia Livia Vallini: Nordita, Stockholm, Sweden Gustavo Yepes: Universita Autonoma di Madid, Spain...

Modelling reionization: evolution of volume filling fraction of ionized hydrogen

Dayal & Ferrara, 2018, Physics Reports, Volume 780, pg. 1-64

The source term: (some) basic problems

Dayal & Ferrara, 2018, Physics Reports, Volume 780, pg. 1-64

The source term: (some) basic problems

The impact of reionization feedback on galaxy formation

Neutral hydrogen : T = T(CMB)

Ionized hydrogen : T ~ 20,000 K

The impact of reionization feedback on galaxy formation

Neutral hydrogen : T = T(CMB)

Ionized hydrogen : T ~ 20,000 K

- The UVB created during reionization can suppress the gas mass of low-mass galaxies, flattening the faint-end slope.
- Variation of faint end slope of UV LF in multiple JWST fields can be used to explore fluctuating UVB (fixing critical mass value) Choudhury & PD, 2019

Key sources of reionization remain hidden

Key reionization sources depend on SF efficiency (impacted by UV feedback) and the escape fraction PD & Ferrara, 2018, Physics Reports,780, 1

Key sources of reionization remain hidden

Key sources and topology (patchiness) of reionization fundamental open questions

Lyman Alpha emitters (LAEs) : a new probe of the patchiness and topology of reionization

This naturally implies a (huge?) sub-population of galaxies hidden in the Lyman Alpha, with more & more becoming visible as reionization proceeds

Lyman Alpha emitters (LAEs) : a new probe of the patchiness and topology of reionization

This naturally implies a (huge?) sub-population of galaxies hidden in the Lyman Alpha, with more & more becoming visible as reionization proceeds

The full LAE model: SPH+radiative transfer

Dayal+10,12; Hutter+14,15,16

Reionization hints from clustering evolution of LAEs

6 Neutral; ionized $f_{\alpha}/f_{c}=1.20$ 5 $\chi^2 = 52.9$ 4 3 w(r) Half neutral 2 Reionization progress 0 decreases (a) -1 measured $f_{\alpha}/f_{c}=0.80$ 5 clustering of LAEs $\chi^2 = 15.0$ 4 3 w(r) 25% neutral 2 0 (d) -1 (m) $f_{\alpha}/f_{c}=0.60$ 5 $\chi^2 = 4.17$ 4 3 w(r) **Fully ionized** 2 1 McQuinn+08; 0 Hutter, PD+2016 10 r [Mpc/h]

First evidence for an over-dense reionized patch

Clustered galaxies preferentially visible in Lyman Alpha

Castellano, PD+2016; Castellano+2017

Looking towards the future: 21cm with the SKA

Cross-correlating 21cm data with (spectroscopically confirmed) galaxy data will be key to yield information on reionization sources & topology

The SKA EoR "synergy" group

- Enormous efforts in trying to link observed 21cm emission with underlying galaxy/QSO populations to shed light on reionization sources & topology.
- We require information on fields, survey volumes/depths to calculate and co-ordinate best possible survey strategies.
- Targeting collaborations with Subaru, WFIRST, Euclid and E-ELT.
- Co-ordinators: Pratika Dayal, Andrea Ferrara, Eric Zackrisson

Relation between LAEs, reionization and 21cm brightness temperature

Lying in over-dense and highly ionized regions, LAEs show much lower 21cm brightness temperatures than average

The 21cm-LAE cross-correlation: hints on neutral fraction

Combining 21cm and LAE data should allow us to differentiate between an IGM that is xx% ionized to one that is completely neutral

The 21cm-LAE cross-correlation: hints on neutral fraction

Combining 21cm and LAE data should allow us to differentiate between an IGM that is xx% ionized to one that is completely neutral

The 21cm-LAE cross-correlation: hints on neutral fraction

Combining 21cm and LAE data should allow us to differentiate between an IGM that is xx% ionized to one that is completely neutral

Topology of reionization: inside-out V/s outside in

Measuring 21cm brightness temperature in regions with/without LAEs can tell us if reionization proceeded inside out or outside-in..

Hutter, PD+2017, ApJ, 836, 176; Hutter, PD et al., decadal paper, arXiv: 1903.03628

Survey parameters to optimise the 21cm-LAE correlation

Key issue: As volume decreases, thermal noise increases. As number of LAEs decrease, shot noise increases.

Solution: 25 deg2 surveys (Subaru/WFIRST) targeting intermediate luminosity LAEs most optimal - but smaller volumes can be compensated by probing to lower Lya luminosities

Hutter, Trott & Dayal 2018; Hutter, Dayal et al, 2019 (Astro 2020 white paper)

Summary

• Modelling reionization still open problem due to key physical uncertainties for both galaxies and IGM (z-evolution of cosmic SFRD, fesc, C).

• Due to these issues, sources and topology of reionization remain outstanding problems in astrophysics.

• Galaxy (specially LAEs)-21cm correlations will be invaluable in shedding light on the reionization state (fraction of neutral hydrogen) and topology.

• 25 deg2 surveys (Subaru/WFIRST) targeting intermediate luminosity LAEs most optimal - trade-off between volume and Lya luminosity limit.

• Contact Pratika Dayal, Andrea Ferrara or Erik Zackrisson for comments for/ questions for/join the SKA EoR Synergy group.