THE HOSTS OF EARLY IONISED BUBBLES UNVEILING THE MOST LUMINOUS LYMAN-ALPHA EMITTERS IN THE EPOCH OF REIONISATION

Jorryt Matthee Zwicky Fellow @ ETHZÜRICH

collaborators include David Sobral, Max Gronke, Ana Afonso, Huub Röttgering, Bahram Mobasher, Sergio Santos, Gabriele Pezzulli, Behnam Darvish and others

1. How did galaxies reionize the Universe,

and how can we trace this process?

2. How did early galaxies assemble? What are the properties of their gas & stars?

GALAXY SAMPLE : LUMINOUS LYMAN-ALPHA SELECTED

- *z* ~ 6.5 (t_{Universe} ~ 800 Myr)
- Number density: ~ 10-20 per deg² Δz^{-1} *
- $M_{1500} \sim -20.5 \text{ to } -22.5 \quad (\sim 1-5 \text{ M}_{1500}^{*})$
- EW_{0, Lya} ~ 30 200 Å

~>2000x brighter than the Vanzella+ z=6.62 LAE

1220

 λ_0 [Å]

1225

SR6

erg \mathbf{s}^{-1} \mathbf{cm}^{-2} Å $^{-1}$]

flux $[10^{-18}]$

VR7

20

15

25

20

15

WHY SELECT AND STUDY LYMAN-ALPHA?

* λ₀=1215.67 Å:
 most efficient line for confirming & identifying samples of young galaxies at z~2-7 until we have JWST

Observed velocity offsets Lya-systemic smaller at z>6 than at z~2-3

ISM in z~7 LAEs more ionised than ISM in z~2 LAEs

Matthee et al. submitted

The shape of the Lya line carries information on HI content

Lya peak separation clear predictor of Lyman-continuum escape

see also Verhamme+2015 Kakiichi & Gronke 2019

Double peaked Lya is common among LAEs* (>50%) at z~2 * R>4000

Early results from VLT/X-SHOOTER CALYMHA

global results: see talk by David Sobral Calibrating Lyman-alpha with matched Halpha Matthee+ in prep

COLA1 - THE FIRST DOUBLE PEAKED LYA EMITTER AT Z>6

see also Songaila+2018

COLA1 - DOUBLE PEAKED LYA EMISSION AT Z=6.6

Lya EW₀~120 Å $v_{sep} = 220+-20$ km s⁻¹ : extremely low column density in the ISM: N_{HI}~10¹⁷ cm⁻²

COLA1 - DOUBLE PEAKED LYA EMISSION AT Z=6.6

Lya EW₀~120 Å $v_{sep} = 220+-20$ km s⁻¹ : extremely low column density in the ISM: N_{HI}~10¹⁷ cm⁻²

Directly witnessing a galaxy contributing to reionization!

HOW CAN WE SEE DOUBLE PEAKED LYA EMISSION AT Z=6.6?

Transmission at the blue "should be" < 0.001 at z~6.5

* in case of uniform UV background

HOW CAN WE SEE DOUBLE PEAKED LYA EMISSION AT Z=6.6?

Need to ionise 0.3 pMpc to redshift 220 km s⁻¹ on the Hubble flow

COULD COLA1 HOST AN IONISED BUBBLE ON ITS OWN?

RELEVANT PROPERTIES:

- * f_{esc,LyC} ~ 30 % (Lya profile)
- * SFR=30±10 M_{sun}/yr (Y band)

ALSO INTERESTING...

- * Compact: $r_{50} = 0.3 \text{ kpc} (0.06'')$
- relatively flat IRAC [3.6]-[4.5]:
 Iow [OIII]+Hβ: Iow metallicity?
 c.f. talk by Roberts-Borsani

Note the systemic redshift is not known yet, but likely between the Lya lines

COLA1 - CAN THE BLUE PEAK BE EXPLAINED WITH A BUBBLE?

COLA1 - CAN THE BLUE PEAK BE EXPLAINED WITH A BUBBLE?

Adopt: fesc =15 %, SFR=30 M_{sun}/yr , $\xi_{ion}=10^{25.4}$ Hz erg⁻¹ (e.g. Bouwens+2016):

ionises the required 0.3 pMpc in 10⁷ yr

see also talk by Castellano on bright galaxies in bubbles

COLA1 - AN AGENT AND A TRACER OF REIONISATION

Prospects – Statistics needed!

- * Are there more of such systems?
- * How abundant are they at z~0-6?
- * Can we use them to get p(fesc I M1500, z)

Exciting prospects for further <u>10m-class</u> follow-up!

ALMA, HST & MUSE view of luminous LAEs

HST: rest-frame UV continuum MUSE: Lyman-alpha ALMA: [CII] 158 micron cooling line & dust continuum

ALMA: (No) Dust continuum in high-z LAEs

Detecting dust continuum (or not) depends on M1500

Matthee et al. 2019, ApJ, 881, 124

Integrated relation between [CII]_{158µm} - UV luminosity

- * No [CII] deficit for SFR > 25 M_{sun} yr⁻¹
- * Below L*_{UV} steeper relation than steeper at low redshift, but significant scatter

Matthee et al. 2019, ApJ, 881, 124

THE FUTURE IS RESOLVED: ALMA + HST+ JWST/NIRSPEC + ELT

CR7:

z=6.60, very high Lya EW, UV bright3 UV components, 4 [CII] componentsdispersion dominated on ~> 2kpc scales

Matthee et al. 2017, ApJ, 851, 145; Sobral et al. 2019, MNRAS, 482, 2422

VR7 with HST/WFC3 & ALMA: z=6.53, bright Lyman-break galaxy, "typical" Lya EW 2 UV & [CII] components

UV/[CII] variations of factors ~5 on ~2 kpc scales — metallicity? density? burstiness?

Matthee et al. 2019, ApJ, 881, 124

VR7 with VLT/MUSE:

z=6.53, bright Lyman-break galaxy, "typical" Lya EW 2 UV & [CII] components

VLT/MUSE detects UV continuum of a z~6.5 star-forming galaxy in 5 hr (Non-AO, 0.9" seeing)

VR7 with VLT/MUSE:

z=6.53, bright Lyman-break galaxy, "typical" Lya EW 2 UV & [CII] components

IFU data reveals two Lyman-alpha components, coincide with UV

ALMA & VLT/MUSE: Comparing [CII] and Lya spectral line profiles in VR7

Lya is redshifted & broader compared to [CII]

... but qualitatively [CII] and Lya profiles remarkably similar

see also resemblance [CII] and Lya extent (Fujimoto's talk)

ALMA & VLT/MUSE:

COMPLEX RESOLVED [CII] AND LYA LINE PROFILE IN VR7

East: Second faint Lya component Δv_{Lya} = +460 kms

West: dominated by bright Lya source Δv_{Lya} = +220 kms

spatially varying N_{HI} Δv_{Lya} variations have local origin

RECAP - LUMINOUS LAES AT Z~7:

Build-up of massive galaxies through assembly of multiple components

These galaxies reside in large (re)ionised bubbles

PROSPECTS FOR FUTURE "BIG EYES" *regarding bright EoR galaxies J~25

Deep, spatially and spectrally resolved spectroscopy 1-5 micron (ELTs+JWST)

- * Fraction of (UV) light faint AGN vs star-formation? Early SMBH formation?
- * Stellar metallicity? Binaries? Any signs for PopIII? (yields?) (in satellites?)
- * ISM abundances (O/H, C/O, N/O), Z_{gas} vs Z_{stars} (alpha-enhancement?)
- * ISM densities, temperature

TAKE AWAY POINTS:

-

- High resolution Lyman-alpha observations are an extremely powerful probe of the HI structure *in* and *around* high-z galaxies
- COLA1 the first double peaked LAE at z>6 resides in a highly ionised bubble and has f_{esc,Lyc} ~30%
- Luminous galaxies are clumpy: [CII]/UV may vary by factors ~5 on ~2 kpc scales.
- Overall trends in spatial variations in [CII] profile are preserved in spatial variations of Lya profile

COLA1 - double peaked LAE: Matthee et al. 2018, A&A, 619, 136 Resolved [CII] in high-z LAEs: Matthee et al. 2019, ApJ, 881, 124

Resolved Lya in high-z LBG: Matthee et al. submitted (arXiv: 1909.06376)

Extra slides

VR7: growth curves of UV, [CII] and Lya

Multiple components in VR7 — HST/WFC3

(No) Dust continuum in high-z LAEs

Luminous LAEs have lowest f_{160µm}/f_{1500Å} ratios

$T_{dust} \sim 70-90K$ in case $SFR_{UV} = SFR_{IR}$

Matthee et al. 2019, arXiv: 1903.08171

Integrated relation between [CII]₁₅₈ - UV luminosity

Extremely steep dependence [CII] - UV for observed UV luminosity

Matthee et al. 2019, arXiv: 1903.08171

Integrated relation between [CII]₁₅₈ - UV luminosity

Below L*_{UV} steeper relation than at low redshift, but significant scatter

Matthee et al. 2019, arXiv: 1903.08171

Luminous z~7 LAEs have multiple components in UV and [CII]

Carniani+2017

Observed evolution of LAEs z~6-7

* Number density of luminous LAEs does not evolve from z~6-7 (HSC regime)

* Decrease in the number density of faint LAEs (S-Cam/MUSE regime)

Matthee et al. 2015 MNRAS 451, 4919

Santos, Sobral & Matthee, 2016, MNRAS, 463, 1678

Spitzer/IRAC [3.6]-[4.5] colour of COLA1

relatively flat colour indicates faint [OIII]+Hb emission: low metallicity and/or high f_{esc}?

COLA1 - WHY NOT [OII] AT Z=1.477? 1:

No Halpha at the expected position if COLA1 were [OII] at z=1.47 *most extreme SDSS [OII]/Halpha ratio

COLA1 - WHY NOT [OII] AT Z=1.477? 2:

COLA1's line profile can't be fitted with [OII] at z=1.47

COLA1 - WHY NOT [OII] AT Z=1.477? 3:

Tentative B flux explained by foreground LAE at z=2.142

COLA1 - PROPERTIES

No obvious CIV or Hell emission detected in COLA1 so far (EW₀<12 Å)

WHY NO OTHER DOUBLE PEAKS KNOWN AT Z>6?

Matthee et al. 2018, A&A, 619, 136

Easier to observe smaller separations (higher fesc & smaller bubbles) Peak separation anti-correlates with luminosity

- 1. low S/N (blue ~0.3*red), low resolution (R>3000)
- 2. only observable in bright, rare LAEs?

Lya luminosity density remarkably constant from z~2.5-6

ρ_{Lya}~10⁴⁰ erg s⁻¹ Mpc⁻³

SC4K: Slicing COSMOS with 4K LAEs 4000 LAEs z=2-6. Volume 10⁸ Mpc³

Sobral, Santos, Matthee et al. 2018, MNRAS, 476, 4725

Lya luminosity density remarkably constant from z~2.5-6

ρ_{Lya}~10⁴⁰ erg s⁻¹ Mpc⁻³

SC4K: Slicing COSMOS with 4K LAEs 4000 LAEs z=2-6. Volume 10⁸ Mpc³

Sobral, Santos, Matthee et al. 2018, MNRAS, 476, 4725

Lya actually becomes brighter compared to UV from z=3-6!

+ Evolution in the dust content (less dust), higher f_{esc,Lya} + Increased ionising photon production efficiency

Sobral, Santos, Matthee et al. 2018, MNRAS, 476, 4725

Multiple [CII] components in *frequency* space

Sobral+2015

Matthee et al. 2017, ApJ, 851, 145

Why stellar metallicities ? Related results from the EAGLE simulation

* higher sSFR = more alpha-enhanced gas (& stars)
* higher redshift = more alpha-enhanced gas

implications for interpreting nebular emission line strengths

Matthee & Schaye 2018, MNRAS, 479L, 34