Galaxy Formation and Reionisation

ASIKU JU

Stuart Wyithe

with thanks to:

Simon Mutch, Alan Duffy, Paul Geil, Chuanwu Liu, Jaehong Park, Yisheng Qi, Madeline Marshal, Andrei Mesinger

Australian Government Australian Research Council

RESEARCH in the national interest - enabling the fature

Reionization by galaxies

HOLKO DD

- Empirical extrapolations of the luminosity function imply that faint galaxies can reionize hydrogen
- Conclusions are sensitive to the unknown escape fraction

Enough stars to reionise the Universe?

ASIKU JU

• Hydrodynamical simulations suggest most starformation is in galaxies below the detection threshold of current surveys

Structure of IGM sensitive to galaxy formation

AOLKO OD

McQuinn et al. (2007)

- Properties of galaxies impact on the spatial fluctuations in ionization
- Infer galaxy properties of galaxy formation from 21cm fluctuations

Redshifted 21cm imaging with SKA

ASTRU JU

Joint SAM for galaxies and reionization

ASIKU JU

- Based on the "Munich model", as described in Guo et al. (2011). Additions for high-z
 - Coupled, spatially dependent reionisation, and feedback with 21cmFAST;
 - Implemented within "horizontal" dark matter trees with high time resolution;
 - No instantaneous mass recycling, with time resolved SNe feedback;

Mutch et al. (2015)

Constraints against the Luminosity function

AOTKU JU

- •Charlot & Fall dust model, with dust optical depths, linked to star formation rate, dust-to-gas ratio and gas column density respectively
- •Reproducing the LF requires strong SNe feedback

Clustering at high redshift

 $\underset{8}{\log_{10}(\langle M\,,\,\rangle/M_{\odot})}$ 10 14 12 10 Bias 8 $10^{10} M_{solar}$ 6 $10^9 M_{solar}$ 4 2 z ~ 7 -18-19-20-21-22 $\langle M_{\rm UV} \rangle$

AOLKO OD

- Clustering consistent with masses of ${\sim}10^{10}$ solar masses
- Dependance of bias on flux limit consistent with observations

Enough stars to reionise the Universe?

AOLKO DD

Liu et al. (2017)

- •The model luminosity function turns over at low luminosities, due to the minimum cooling mass for galaxy formation.
- •Approximately half of the star-formation rate density has been observed at $z\sim 6$

Constraints on escape fraction

• Simultaneously predicting the LF, neutral fraction and CMB optical depth suggests an escape fraction of \sim 13% assuming constant value with redshift

Constraints on escape fraction

 \bullet Using a flexible function suggests an escape fraction of ${\sim}20\%$ at z{ ${\sim}6$ decreasing towards high redshift

Constraints on escape fraction

ASIKU JU $f_{\rm esc}$ 0.42^{+0.32}_{-0.20} 0.10-0.08 Naidu et al (2019) 0.06 ب 0.04 (a) 0.02 10 Ň [γ_{ion} N^{−1}_H Gyr^{−1}] M_{min} 9.71^{+0.59}_-0.93 10⁰ 10.A 10⁻¹ 10⁰ 00 M_{min} °. [∓]_X 10^{−1} °. (c) 10⁻² 12 14 12 10 8 6 0,0 0.2 0,90 80 10^A <u>д</u>. 6 redshift 0 Meraxes Mason et al. (2019) M_{min} Becker & Bolton (2013) Planck collaboration (2017) $f_{\rm esc}$ McGreer et al. (2015)

• Assuming a minimum mass cuttoff for escaping photons suggests an escape fraction of ~20-50% above M~ $10^{9-10}M_{solar}$ (corresponding to $M_{UV} \sim -14 \rightarrow -18$)

21cm power-spectrum and galaxy formation

ASTRU JU

- Reionization leaves a distinct mark on the power-spectrum of 21cm fluctuations
- Galaxy evolution drives the shape of the 21cm power-spectrum
- Goal to provide a connection between galaxy formation and ionised structure

21cm power-spectrum and galaxy formation

ASTRO JD

HII regions around luminous galaxies

ASIKU JU

 Probe reionization through searches for large HII regions around massive galaxies

HII regions around luminous galaxies

AOLKO OD

- Hundreds of luminous galaxies in an SKA field to be discovered by WFIRST
- HII regions will be detectable in stacked spectra along the line-of-sight to the most luminous galaxies

Summary

ASTRU JU

- Low luminosity galaxies likely played a key role in the reionization of hydrogen.
- Simulations suggest only half of this starformation has been observed, but that the average escape fraction from high redshift galaxies may have been lower than at z~5-6.
- Simulations can also be used to link galaxy formation with ionisation structure to be measured with SKA, providing a probe of the contribution of the faintest high-z galaxies.

Star formation efficiency

ASTRU JU

Two modes of feedback

Reionization feedback: suppression of gas accretion onto small halos from a hot IGM

SNe feedback: suppression of star formation in small halos

• SNe feedback yields a rising stellar fraction, agreeing with Halo Abundance Matching

Sizes of galaxies

- Sizes, based on DM halo properties, and their evolution agree with observations
- SNe feedback is needed to get the correct redshift evolution at fixed luminosity

Reionization

ASTRO JU

Rome 2019

21cm power-spectrum and galaxy formation

HOLKO OD

- Significant scatter in halo mass luminosity and halo mass – stellar mass relations
- Scatter reduces dependence of 21cm power-spectrum on galaxy properties

HII regions around luminous galaxies

AOIKU JU

 Luminous high-z galaxies lie at the center of large isolated regions until late in reionization

Redshifted 21cm imaging with SKA

ASTRO JD

