

COSMOLOGY & FUNDAMENTAL PHYSICS

Inputs from: E. Branchini, E. Cappellaro, S. Cristiani, L. Guzzo, S. Matarrese, L. Moscardini, I. Prandoni, M. Viel

INAF Days - OA Capodimonte - 23-25 marzo 2019

High-level questions

- Nature of Dark Matter ?
- Nature of Dark Energy / Gravity at the largest scales ?
- Physics of the initial conditions (inflation)?
- How constant are fundamental constants ?

Implications for the physics beyond

- → the Standard ∧CDM Cosmological Model
- the Standard Model of particle physics

Lots of astrophysics to learn in the process!!

DM nature & cosmic structure formation

Breakthrough: unveiling DM nature (condensate? self-interacting? decaying? etc.)

→ candidates: SUSY/WIMPS,axion-like, gravitinos, sterile neutrinos, light scalar field, PHS, etc.

Signatures:

- ➔ free streaming scale
- → halo shapes and substructures
- → effect on expansion history

How to probe DM nature?

- → Small-scale observables:
 - Dynamics of dwarf galaxies(e.g. GAIA) and groups/clusters (e.g. CLASH)
 - Strong lensing in clusters and galaxies: JWST, Euclid, LSST, WFIRST

Medium scales: galaxy clustering, weak lensing and IGM (DES, Euclid, DESI, LSST, SKA, WFIRST, E-ELT)

DM nature & cosmic structure formation

Neutrino masses: constrained by cosmology to a precision higher than particle physics experiments:

Particle physics: $0.06 \text{ eV} < m_v < 6 \text{ eV}$ Cosmology: $m_v < 0.12 \text{ eV}$

From dynamical probes (LSS/IGM) + CMB

→ Medium-large scales: low res. investigations with lots of statistics (i.e. SDSS, Euclid/LSST, SKA, WFIRST)

→ Small scales: high res. investigations (i.e. **HIRES**, strong lensing **Euclid/LSST, GAIA**, WFIRST)

Indirect DM detection:

- →ID as the *best* way to detect the *cosmologically relevant* DM
 →Complement to direct detection methods and accelerator searches.
 →Look for *unambiguous* signature of DM annihilation, decay or
 interactions in cosmic rays, *neutrino* and gamma-ray sky
 →ID strategy requires input from Cosmology and Particle Physics.
 - DM from Cosmic Rays (Fermi, AMS, Pamela)

• CTA observations at [0.1,10] TeV to investigate the nature of the excess.

γ -ray range as the "golden channel" for ID

- Huge scientific success of Fermi, able to set DM strong constraints:
- The gamma ray emission from Dwarf
 Spheroidals of the satellite galaxies gamma-ray background (see plot)
- Gamma-ray flux from diffuse gamma gamma extragalactic background (spectrum anisotroipies).
- "Fermi excess" from the Galactic Center (also in the plot).
- These constraints are effective. (i.e below thermal x-section) for candidates lighter than ~ 1TeV.
- CTA to push this limit to higher masses

<u>Soft X-rays</u>: detection of a decaying DM particle (e.g. sterile neutrinos at ~3.5 keV) → Athena to have unique sensitivity for this DM search <u>Hard X-rays</u>: next generation optics for improved sensitivity and resolution up to 300 keV

Dark Energy / Modified Gravity

Why?

To explain accelerated expansion

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2} \right) \qquad p = w\rho c^2 \ ; \ w < -1/3$$

w = -1: Cosmological constant Agrees with all data

Which physics?

Don't know, but should explain why $\rho_{\Lambda}^{oss} \simeq 10^{-120} \rho_{\Lambda}^{teor}$ Extra scalar degree of freedom in field equations

Signatures:

- expansion rate: SN-Ia, BAO, CMB
- growth of structures: RSD, cosmic shear, galaxy clusters, ISW, ...

<u>Key science driver</u> of all ongoing and future surveys: DES, eROSITA, DESI, **LSST**, **Euclid**, **SKA**, WFIRST

Expansion and Growth

One-to-one relationship between expansion and growth

SB & Guzzo 01

Inconsistencies between expansion and growth

→ Signature for new physics

Initial conditions: inflation

Which physics? Expansion dominated by "false vacuum" energy in the potential of a scalar field, slowly rolling to the "true vacuum"

Features and predictions:

- No topological defects within the horizon
- \rightarrow ~ flatness $\Omega_k \sim 0$
- → ~ Gaussian density perturbations f_{NL}<<1</p>
- Spectrum of density perturbations:
 P(k)~kⁿ; n~1, dn_s/dk~0
- Spectrum of tensor perturbations (GW):
 B-modes in the CMB polarization

How? Phase of accelerated expansion

 Precise measurement as a probe of physics of inflation

LSS data

LSS: Combining imaging & spectroscopy

Euclid(/LSST) – THE cosmology experiment

GALAXY CLUSTERS (GEOMETRY AND GROWTH)

- Visible imaging (1 band)
- Infrared imaging (Y,J,H)
- Infrared slitless spectroscopy
- Launch 2021
- 15,000 deg² survey
- Images for 2x10⁹ galaxies
- Spectra for ~4-5 x 10⁷ galaxies (0.9<z<1.8)

Objectives:

- Build a map of dark and luminous matter over 1/3 of the sky and to z~2
- Unveil the nature of dark matter
- Trace the origin of cosmic acceleration
- Use multiple probes → max control over systematic errors

SKA – Surveys for Cosmology

- **1. HI Intensity Mapping** [BAO, super-horizon, etc.] All-sky (3π sr); low-res. >30'; 0<z<3
- 2. HI Threshold: galaxy redshift survey [BAO, RSD] SKA1: 5 10⁶ gals @ z<0.5 SKA2: ~10⁹ gals @ z<2</p>
- **3. Continuum** [weak lensing, angular clustering, ISW]:
 - → <u>All-Sky Survey</u> (~ 1-2" res.)
 - → Weak Lensing Survey (0.5" res.):

NB: Commensality with HI/Continuum surveys for galaxy evolution

<u>Euclid + SKA: huge synergies</u>
 → Scientific: beat systematics, complementary constraints, multi-tracers, etc.
 → Programmatics: e.g. simulations, likelihood definitions and coding, etc.

Distance indicators and expansion tests

Cosmology with SNe

DES will increase statistics by 10 (FoM~100)

Main limitation is spectroscopic follow-up LSST will increase statistic by 100 100.000 SNIa in the range 0<z<1 (FoM ~150) Spectroscopic follow-up is the bottle-neck

High-redshift SNIa, z>1 need near-IR from space

DESIRE: a proposal for a high-z **Euclid** SN search (Astier et al 2014) (FoM ~200)

Not a top priority for the mission

WFIRST : High-z SN search is a major component (180d of observing time) The 2.4m mirror will assure not only light curves, but most important, live spectra *To date marginal European involvement*

Follow-up of a nearby sample is still very much needed for:

- anchoring the Hubble diagram, standardization of SNIa luminosity
- requires accurate (within few %) spectrophotometric calibration

SOXS proposal or the NTT

The lesson of the CMB (see talk by M. Bersanelli)

<u>Difficult measurement</u>, BUT: → Everything is linear: ΔT/T~10⁻⁵
 → Physics is well understood
 → Undergoing transition from precise T measurements to

precise polarization and spectral distortion measurements

Dark Energy with SNe

DES is increasing the statistics by 10 (DE FoM~100)

LSST will increase statistics by 100 100.000 SNIa in the range 0<z<1 (FoM ~150)

Euclid currently, not expected to give a significant contribution for SNIa (despite a dedicated survey could give FoM~200, Astier et al. 2014). But ... Super-Luminous SNe (SLSN) can be used to extend the Hubble diagram to z~3.5

WFIRST : High-z SN search is a major component (180d of observing time) Not only light curves, but most important, live spectra.

H₀ tension

Follow-up of nearby SNe is needed for:

- understand systematics (evolution/diversity, reddening)
- standardization of SNIa in near infrared, SLSN calibration
- comparison with different luminosity distance calibrators (eg. SBF)

Spectroscopy is the bottle-neck

A new spectroscopic facility dedicated to transients

if/when ??

H₀ from standard sirens (GW)

Abbott+2018:

Measurement of H₀
 from GW170817,
 combining distance from
 GW signal with redshift of
 the EM counterpart

Chen+2018:

→ 2% precision in H₀ measurement with Ligo+Virgo+KAGRA in 5 years

H₀ from standard sirens (GW)

Chen+2018: → 2% precision in H₀ measurement with Ligo+Virgo+KAGRA in 5 years

Quasars as distance indicators

Breaking the z~2 limit of SN-la

Risaliti & Lusso 2019:
→ Based on non-linear
correlation between UV
and X-ray quasar
luminosities

Also GRB as distance
 indicators at z>2
 Role of the THESEUS
 mission (Amati+2017)

Is there a σ_8 tension?

Bocquet+2018

Independent low-significance indications for a tension between the amplitude of perturbations (σ_8)

 \rightarrow \land CDM-extrapolated from Planck measurements, and

measured from low-z probes of cosmic growth (e.g. galaxy clusters, cosmic shear)

Sandage Test of Cosmic Expansion

How constant are fundamental constants?

OCAL CALLER ISTICATION

High-risk/high gain: worth a bet!

- How to probe?
 - Alkaline-doublets: changes in frequency of atomic and molecular transitions
 - QSO-absorption systems of atomic or molecular gas
- Status
 - no variation of α with time ~ 5 ppm
 - consistent with spatial variation (at 4.1 σ)
 - but systematics...
- Precision achievable with future facilities:
 - ESPRESSO@VLT first HR spectrograph designed for this science
- Should we push in some direction? E.g. HIRES
 - HIRES ~ one order of mag gain in sensitivity
- Role of Italian community?
 - Thanks to ESPRESSO could play a leading role in the next years

Programmatics (highly personal)

- 1. A unique strategy for cosmological surveys:
 - Euclid/LSST
 - SKA

-

- Follow-up observations (4MOST, MOONS, MSE,...)
- 2. Which involvement in next-generation CMB experiments?
 - LSPE/STRIP
 - LiteBIRD (if selected)
- **3.** HPC: what next after CHIPP?
- Coordination with ASI & INFN necessary Meeting "Euclid and Beyond" held in Rome (Feb 11-14)

Cosmology as an intrinsically multi-disciplinary and multiwavelength research field

How to reflect this in the current INAF organization in "Raggruppamenti Scientifici Nazionali"?

A schematic summary

	Euclid (LSST)	SKA	E-ELT	СТА	Athena	CMB Stage-IV	HPC infrastru ctures
Nature of Dark Matter							
Nature of Dark Energy							
Gravity on large scales							
Physics of initial conditions							
Fundam. constants							
Highly relevant		Possibly Not interesting rele		much evant			

The "concordance" model

