The Host Galaxies of Fast Radio Bursts with ASKAP and the VLT

Stuart Ryder
Macquarie University
Sydney, Australia

On behalf of the CRAFT collaboration
Overview

• What is a Fast Radio Burst (FRB)?
• Circumstantial localisation: FRB 171020.
• The first ASKAP localisation: FRB 180924.
• Probing a galaxy halo with FRB 181112.
• Do FRBs have SN-like optical counterparts?
• Recap
What is an FRB?

- **Fast**: typically < 10 milliseconds.
- **Radio**: detected at 0.5–10 GHz, no counterparts at other wavelengths.
- **Bursts**: (almost) never repeat, flux densities 10^{10} x greater than pulsars.
- Rate of 10^3 – 10^4 sky$^{-1}$ day$^{-1}$.
- Occur at cosmological distances.
The “Repeater”

• FRB 121102 (Spitler et al. 2014) displays sporadic repeat bursts with same DM ⇒ not cataclysmic.
• Enabled localisation to 0.01" with JVLA & EVN.
• Host is a low-metallicity, star-forming dwarf $r \sim 25$ mag galaxy at $z=0.2$ (Tendulkar et al. 2017).
• FRB associated with a persistent, compact radio source and star-forming knot ⇒ magnetar?
“Flys eye” FRB survey

Shannon et al. (2018, Nature) found 23 FRBs in 14 months during ASKAP commissioning.
• FRB 171020 had DM = 114 pc cm$^{-3}$, so expect $z < 0.08$.
• Spectroscopy with VLT/X-shooter all but eliminated WISE/SuperCOSMOS sources as host.
• Most likely host is ESO 601-G036, an Sc galaxy at $z=0.009$, with signs of tidal interaction.
• ~ 1 mag brighter in R than FRB 121102 host + no continuum radio emission comparable to the persistent source.
FRB 171020

J221621.59-191829.9
z = 0.024

ESO 601-G036
z = 0.00867
The search begins

Two weeks of searching in interferometric mode in Sep 2018 turned up nothing, until…
FRB 180924

RA = $21^h 44^m 25.255^s \pm 0.008^s$

Dec = $-40^\circ 54' 00''.1 \pm 0''.1$

No repeat burst, or persistent radio counterpart observed.
The host galaxy of FRB 180924

• VLT FORS2 g-band 2500s exposure.
• DES J214425.25–405400.81.
• $r = 20.54 \pm 0.02$.
• $z = 0.3214$ (KCWI) \[\Rightarrow D \sim 1300 \text{ Mpc}. \]
• $M_\ast \sim 2.2 \times 10^{10} \, M_\odot$.
• SFR $< 2 \, M_\odot \text{ yr}^{-1}$.

![Galaxy Image]
A single fast radio burst localized to a massive galaxy at cosmological distance

1Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710, Australia. 2Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia. 3International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia. 4University of California Observatories–Lick Observatory, University of California, Santa Cruz, CA 95064, USA. 5Kavli Institute for the Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan. 6Instituto de Física, Pontificia Universidad
Alien signal? Cosmic mystery of 'fast radio bursts' from space baffles astronomers

ASTRONOMERS have pinpointed the location of unexplained radio signals from a distant galaxy – but could this be proof of alien life?

By TOM FISH

5 days later...

This is an unedited manuscript that has been accepted for publication. Nature Research are providing this early version of the manuscript as a service to our customers. The manuscript will undergo copyediting, typesetting and a proof review before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.

A fast radio burst localized to a massive galaxy

Nature (2019) | Download Citation
FRB 190523
• Foreground galaxy has $M^* = 10^{10.7} \, M_\odot$
• Seyfert nuclear spectrum \Rightarrow expect temporal smearing of FRB pulse due to turbulence in halo.
Halo? What halo?

$\tau_{\text{scatt}} < 40 \, \mu\text{sec}$ constrains $\langle n_e \rangle < 10^{-3} \, \text{cm}^{-3}$ (cf. $\sim 0.1 \, \text{cm}^{-3}$ for pressure equilibrium with $T \sim 3 \times 10^6 \text{K}$ halo gas) and low turbulence.

$\text{RM} = 10.9 \, \text{rad m}^{-2} \Rightarrow B_{\parallel} (\text{max}) < 0.8 \, \mu\text{G}$ (cf. $\sim 10 \, \mu\text{G}$ from RM of Mg II absorbers in halos of normal galaxies probed by QSOs – Bernet+08).
The low density and magnetization of a massive galaxy halo exposed by a fast radio burst

J. Xavier Prochaska1,2,*, Jean-Pierre Macquart3, Matthew McQuinn4, Sunil Simha1, Ryan M. Shannon5, Cerie K. Day5,6, Lachlan Marnoch6,7, Stuart Ryder7, Adam Deller5, Keith W. Bannister6, Shivani Bhandari6, Rongmon Bordoloi8, John Bunton6, Hyerin Cho9, Chris Flynn8, Elizabeth K. Mahony6, Chris Phillips6, Hao Qiu10, Nicolas Tejos11

1University of California Observatories-Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064, USA. 2Kavli Institute for the Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan. 3International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia. 4Astronomy Department, University of Washington, Seattle, WA 98195, USA. 5Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia. 6Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 Australia. 7Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia. 8North Carolina State University, Department of Physics, Raleigh, NC 27695-8202, USA. 9School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea. 10Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006, Australia. 11Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile.

*Corresponding author. Email: xavier@ucolick.org
Are FRBs associated with SN-like optical transients?

Lachlan Marnoch, MRes 2019, Macquarie University
Are FRBs associated with SN-like optical transients?
Are FRBs associated with SN-like optical transients?
Are FRBs associated with SN-like optical transients?

<table>
<thead>
<tr>
<th>FRB</th>
<th>180924</th>
<th>181112</th>
<th>190102</th>
<th>Combined</th>
<th>190608</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>g</td>
<td>I</td>
<td>g</td>
<td>I</td>
<td>g</td>
</tr>
<tr>
<td>Limit at burst position (mag)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORS2 template</td>
<td>25.1</td>
<td>23.6</td>
<td>25.2</td>
<td>24.6</td>
<td>26.4</td>
</tr>
<tr>
<td>X-shooter template</td>
<td>24.7</td>
<td>22.7</td>
<td>25.9</td>
<td>24.0</td>
<td>24.3</td>
</tr>
<tr>
<td>Probability of non-detection</td>
<td></td>
<td></td>
<td></td>
<td>T + 10d</td>
<td></td>
</tr>
<tr>
<td>Type Ia</td>
<td>34%</td>
<td>12%</td>
<td>44%</td>
<td>34%</td>
<td>78%</td>
</tr>
<tr>
<td>Type Ib</td>
<td>94%</td>
<td>54%</td>
<td>91%</td>
<td>91%</td>
<td>99%</td>
</tr>
<tr>
<td>Type Ic</td>
<td>94%</td>
<td>49%</td>
<td>88%</td>
<td>80%</td>
<td>98%</td>
</tr>
<tr>
<td>Type IIa</td>
<td>40%</td>
<td>41%</td>
<td>34%</td>
<td>47%</td>
<td>39%</td>
</tr>
<tr>
<td>Type II-L</td>
<td>69%</td>
<td>48%</td>
<td>78%</td>
<td>79%</td>
<td>63%</td>
</tr>
<tr>
<td>Type II-P</td>
<td>89%</td>
<td>73%</td>
<td>75%</td>
<td>89%</td>
<td>74%</td>
</tr>
</tbody>
</table>

T + 10d
Are FRBs associated with SN-like optical transients?

- Type Ia / IIn in all 3 hosts? Almost certainly not.
- Type Ib/c, IIL, IIP? Possible, but unlikely.
- Superluminous SNe? No.
- Kilonovae? Can’t say.
- TDEs/AGN flares? No, radial offsets too large.
In summary

• Localising FRBs to/within host galaxies is shedding new light on the nature of progenitors, and the IGM.
• Galaxy halos may not be as turbulent, or magnetically supported as we assumed.
• We can already all but rule out some progenitors (Type Ia & IIn SNe, AGN) to FRBs.
• ASKAP + ESO/VLT are ideally suited to exploiting FRBs as cosmological tools.