COSMIC RAY PHYSICS IN THE CTA ERA

Elena Amato INAF-Osservatorio Astrofisico di Arcetri

CHERENKOV ASTRONOMY

VERY LOW FLUXES SPACE IS NOT AN OPTION NO ATMOSPHERIC PENETRATION ATMOSPHERIC SHOWERS

2

¹⁴N

16 0

THE FIRST GAMMA-RAY SOURCE

- 1960, COCCONI; THE CRAB NEBULA SHOULD EMIT GAMMA-RAY PHOTONS
- 1989: CRAB NEBULA OBSERVED BYTHE 10 M TELESCOPE WHIPPLE (Weekes+ 89)
- FLUX FROM CRAB: 6 PHOTONS/ m²/yr

PRESENT DAY ATMOSPHERIC CHERENKOV TELESCOPES

6

- 4 LARGE (23 M) N/S
- 15/25 MEDIUM (12 M) N/S
- •
- 70 SMALL (2M) S

WHAT CTA WILL DO FOR COSMIC RAY PHYSICS

COSMIC RAYS

- > 98% PROTONS AND NUCLEI
 - 87% PROTONS
 - 12% He
 - 1% HEAVIER NUCLEI
- > 2% ELECTRONS
- 10⁻³ ANTIMATTER (POSITRONS AND ANTI-PROTONS)

n~10⁻⁹ cm⁻³

VERY FEW PARTICLES BUT WITH AN ESSENTIAL ROLE FOR THE WORKINGS OF THE ENTIRE COSMOS

THE BIG QUESTIONS

- WHAT ARE THE MAIN SOURCES OF GALACTIC COSMIC RAYS?
 WHERE ARE THE GALACTIC PEVATRONS HIDING?
- WHAT IS THE END OF THE CR LEPTON SPECTRUM?
- CAN WE USE IT TO CONSTRAIN LOCAL TURBULENCE?
- PWNe?
- IS THE CR SPECTRUM UNIVERSAL THROUGHOUT THE GALAXY?
- GALACTIC CENTRE PEVATRON AND ITS NATURE
- WHAT IS THE INTERPLAY BETWEEN CRS AND STAR FORMATION AT ALL SCALES
- IS THERE A UNIVERSAL GAMMA-RAY/IR RELATION?
- CRS AND IN OTHER GALAXIES: THE LMC
- WHAT IS THE ROLE OF CRS IN TERMS OF COSMOLOGICAL FEEDBACK?
- CR CONTRIBUTION TO GALAXY CLUSTER PHYSICS

GALACTIC COSMIC RAYS

ASSOCIATION WITH SNRS SUGGESTED SINCE THE '30S (Baade&Zwicky 34)

 $L_{CR} \sim 3 \times 10^{40} \text{ erg s}^{-1} \sim 10\% (10^{51} \text{erg}/100 \text{yr})$

- ACCELERATION MECHANISM SUGGESTED IN THE '70s (Krymski 77, Bell 78, based on Fermi 49)
- FIRST INDIRECT EVIDENCE: X-RAY **OBSERVATIONS OF THIN** SYNCHROTRON FILAMENTS IN YOUNG SNRs (e.g. Ballet 06, Vink 12 for a review): MULTI-TeV ELECTRONS, AMPLIFIED B-FIELD
- DIRECT EVIDENCE OF PROTON ACCELERATION IN MIDDLE-AGED SNRs: W44, IC443 (Agile, Fermi 09-10)

"PION BUMP" IN MIDDLE AGED SNRS INTERACTING WITH MOLECULAR

CLOUDS Fermi (Abdo+ 09,10; Ackerman+ 13) & Agile (Giuliani+ 10,11; Cardillo+ 14)

W44:MOSTLY REACCELERATION

- OLD, SLOW SHOCK, LOW EFFICIENCY
- BRIGHT THANKS TO WEALTH OF TARGET

LOOK FOR EFFICIENT ACCELERATION ELSEWHERE, e.g. TYCHO (Morlino&Caprioli 12)

 $Log(v F_v)$ [Jy Hz]

■EMAX ≈500 TEV •ξ_{CR} ≈10%

TeV GAMMA-RAYS DETECTED FROM >10 SNRs:

- MOST SHOW STEEP SPECTRA •
- CUTOFF/BREAK E_v<10 TEV ۲

DETECTING PEVATRON SNRS WITH CTA

- 100s OF NEW DETECTIONS OF SNRS
- COMPETING WITH RADIO WAVELENGTH DETECTIONS

MAXIMUM ENERGY IN SNRS MFA (Bell 04) DUE TO CURRENT OF ESCAPING PARTICLES GROWTH RATE PROPTO J_{CR} WHICH DEPENDS ON SPECTRUM AT THE SHOCK, P_{MAX} AND V_{s} (Schure & Bell 13, Cardillo, EA, Blasi 15)

SELF-REGULATION MECHANISM

MAXIMUM ENERGY AND SOURCE SPECTRUM

WITH $\Gamma_{CR} > 2$, P_{max} =PeV REQUIRES: •RARE (<1/1000 yr⁻¹) •EXTREME EVENTS (E_{SN}>10⁵²erg) •EXTREME EFFICIENCY (ξ_{CR} >30%) $E_{\rm MAX} \propto \xi_{\rm CR} E_{\rm SN}$

 $Flux \propto \xi_{\rm CR} E_{\rm SN} \mathcal{R}$

MASSIVE STAR WINDS?

CR SPECTRUM AND ENERGETICS OK WITH CONTINUOUS INJECTION OVER FEW X 10⁶ YR

STRIKING SIMILARITY WITH GALACTIC CENTRE

LOOK FOR CUTOFF

WITH CTA:

CONSTRAIN SIZE OF EMITTING REGION (ENERGETICS)

THE GALACTIC CENTRE

- CLOSEST SUPERMASSIVE BH
- DENSE MOLECULAR CLOUDS
- > MANY SNRs AND PWNe
- > STAR FORMING ACTIVITY
- BASE OF LARGE-SCALE OUFLOW

WITH CTA

- NATURE OF POINT-LIKE CENTRAL GAMMA-RAY SOURCE
 - HIGH SPATIAL RESOLUTION, SENSITIVITY TO VARIABILITY
- PARTICLE ACCELERATION HISTORY
 - DISTINGUISH CLOUDS FROM INDIVIDUAL POINT SOURCES, LOOK FOR CUT-OFF
- NATURE OF LARGE-SCALE OUTFLOWS
 - DETECT FBs AT 3 SIGMA IN 50 HR
- STUDY SNRs, PWNe, MCs

INDIVIDUAL SOURCES AND DIFFUSE EMISSION

- CENTRAL SOURCE EXTENSION
- CENTRAL SOURCE VARIABILITY
- SPECTRAL VARIABILITY WITH T<30 MIN

CTA CAN DETERMINE:

- J1741-302 CUTOFF (CURRENTLY UNDETECTED TO 10 TeV)
- NATURE OF EMISSION (LEPTONIC VS HADRONIC)

FLARE SENSI

10²

0.4

σ/ F₀

0.2

CTA CAN UNCOVER:

• MORPHOLOGY

• SPECTRAL CUT-OFF UP TO 100 TeV (200 h observation)

COSMIC RAY ELECTRONS

- CR ELECTRONS AT E>10 TeV PROBE THE LOCAL CR ACCELERATION ENVIRONMENT (LOSS LENGTH ~100 pc)
- IACT SUITABLE FOR MEASUREMENTS (SEE H.E.S.S.)
- BROKEN POWER-LAW [SLOPE -3(-3.8) BELOW (ABOVE) 1TeV]
 DIFFICULT TO INTERPRET

ELECTRONS WITH CTA

3-SIGMA MEASUREMENT

LARGEST GRAVITATIONAL STRUCTURES IN THE UNIVERSE:

30-300 GALAXIES, R ~FEW Mpc, M~10^{14}-10^{15} M_{\odot}

30% BARYONS (10% STARS, 15-20% HOT DIFFUSE GAS)

70% DARK MATTER

ENERGY INPUT (MERGERS): 10⁶⁴ erg/Gyr

CLUSTER SCALE RADIO EMISSION

OPEN QUESTIONS FOR CTA

- DETECT GAMMA-RAY EMISSION FOR FIRST TIME
- DETERMINE CR PROTON CONTENT AND DYNAMICAL IMPACT
- CR ACCELERATION, PROPAGATION, CONFINEMENT
- ELECTRON ACCELERATION
- MAGNETIC FIELD DISTRIBUTION

CTA KSP ON PERSEUS

42

Hitomi Coll, 16

Flux (counts s⁻¹ keV⁻¹)

LIMITS ON CRS IN PERSEUS

SUMMARY AND CONCLUSIONS

- \checkmark MANY OPEN QUESTIONS IN CR PHYSICS
- ✓ CTA WILL GREATLY CONTRIBUTE TO CLARIFY SOME OF THEM
 - THE NATURE OF GALACTIC PEVATRONS
 - □PHYSICS IN THE GALACTIC CENTRE REGION
 - HELP CONSTRAIN GALACTIC PROPAGATION IN OUR NEIGHBOURHOOD THROUGH MEASUREMENYS OF MUTI-TEV ELECTRONS
 - AT THE SAME TIME CLARIFY ORIGIN OF POSITRON EXCESS
 - □CR CONTENT OF GALAXY CLUSTERS
 - COSMOLOGICAL IMPACT OF CRs
- ✓ EXCITING TIMES AHEAD