OPTICAL SURVEYS IN THE MULTI-MESSENGER ERA

ENRICO CAPPELLARO

TRANSIENT SEARCHES SUPERNOVAE

	SNe	candidate
1987	13	17
1997	111	163
2007	539	571
2017	1038	7714
$2019 *$	1427	11552

PS1 2967

ATLAS
1600

TRANSIENT SEARCHES

More statistics
Better S/N, resolution, spectral range,....
Improved temporal sampling

"many" rare events
homogeneity becomes diversity
unexplored phases eg. flash spectroscopy
... unique, unusual, peculiar, extreme
...... use of the word reflects incomplete knowledge.
Milisavljevic \& Margutti 2018

TIME DOMAIN

SUPER-LUMINOUS SNE

Smartt, S. 2012 Nature 491, 205

Gal-Yam 2012 Science 337, 927
$M_{\text {abs }}<-21$ mag
type
I H-poor Oll 3000-5000 A
II H-rich either in emission (IIn) or, later, in absorption
rise time: $20-100 \mathrm{~d}$
host: faint dwarf galaxies

Superluminous Supernovae as Standardizable
Candles and High-redshift Distance Probes
Inserra \& Smartt 2014 ApJ 796,87
STD $\left(\mathrm{M}_{\mathrm{abs}}\right)<0.2 \mathrm{mag}$

SUPER-LUMINOUS SNE

Arcavi et al. 2012

Gal Yam 2018

$M_{a b s}<-21$ from DES, $M_{a b s}<-19$
rise time:
20-100 d
host: faint dwarf galaxies

SN2018bgv ... the fastest-rising SLSN-I, with a ... rise time of just 10 days
SN2018don adds to the small but

Angus et al. 2019
 growing sample of SLSN-I that occur in high-mass, solar metallicity galaxies

Lunnan et al. 2019 for ZTF

SUPER-LUMINOUS SNE

SLSN: luminous \& long lasting

Why not found before 2010?

"popular" explanation: bias of targeted searches pointing preferentially bright galaxies

- The Palomar SN search in the ' 70 was using the same telescope/ FoV of ZTF
- Cosmological search of the '90 were un-targeted and sampling large volumes.
- LOSS was limited to $z \sim 0.05$. From 2010, 1 SLSN found at $z<0.05$. The host is a bright galaxy.

The key is the transient selection criterium:
1 - time scale, 2 - color, 3 - host properties,
SLSN: rare \& long lasting

SUPER-LUMINOUS SNE

- A typical story for a new transient class
1 - 10 - 100
peculiar -> homogeneity -> diversity
"The energy source of SLSNe-I is still an open question, with viable models including central-engine models driven by a newborn rapidlyspinning magnetar or an accreting black hole, interaction with hydrogen-poor CSM, or, perhaps for the most slowly-evolving events, models powered by large amounts of radioactive 56 Ni . The energy source for SLSNe-II is even less well understood."

Statistics alone does not guaranties for interpretation

FAST EVOLVING OPTICAL TRANSIENTS SN IAX

Fast
Faint (relatively)
Slow
host rate rise time 10-18 d $\mathrm{M}_{\text {abs }}-13 /-19$ $v_{\exp } 2000-6000 \mathrm{~km} / \mathrm{s}$

.... a partial deflagration of a C-O WD not unbinding the progenitor star Foley et al. 2008

FAST EVOLVING OPTICAL TRANSIENTS CALCIUM-RICH

Kasliwal etal. 2011

Fast
Faint
Fast

- host
- early evolution to nebular (1-3 mo) dominated by Calcium
- rate
$30-100 \%$ of SN la
He-shell double-detonation explosion of a C/O
 Galbany et al. 2019
out stah dard thermonuclear and standard A helium shell detonation on the ṣurface of a sub-ChanGirfe-cillaps Jacobson-Galan et al . 2019

FAST EVOLVING OPTICAL TRANSIENTS

Thermonuclear

Different WDs explosion mechanisms can produce very different results.

Can they produce standard candles?

Taubenberger et al. 2017

FAST EVOLVING OPTICAL TRANSIENTS
 AT2018COW

Margutti et al. 2019 ApJ 872,18
very fast $t_{\text {rise }} 2-5 d$ Bright $\quad M_{\text {abs }}-19$ very fast $v_{\exp } 0.1 \mathrm{c}$

FAST EVOLVING OPTICAL TRANSIENTS AT2018COW

Margutti et al. 2019 ApJ 872,18

The inner engine is hidden.
It can be an embedded internal shock produced by interaction with a compact, dense circumstellar medium.

The X-ray and UV/optical emission point toward a small amount of asymmetrically distributed H-/ He-rich ejecta
radio emissione revealed a nonrelativistic blast wave propagating into a relatively dense environment

IR excess may be related to a light echo

FAST EVOLVING OPTICAL TRANSIENTS AT2018COW

- Compact objects (BH/NS) engines (accretion/ rotation/magnetic field) are more often invoked
- Ejecta/shell/CSM shocks can outshine other luminosity contributions (but may also provide efficient central engine)
- Multi-wavelenght is needed but may not be sufficient

DISCOVERY OF A KILONOVA

GW1708717 12:41:04
GRB170817A 12:41:06
22:32 Sunset Chile
AT2017gfo 23:33
01:05 discovery GCN

THE FAINT SHORT GRB

D'Avanzo et al. 2018

off-axis relativistic jet opening angle 6 deg viewing angle 30 deg Lorentz factor 160 CSM density

$$
2.5 \times 10^{-3} \mathrm{~cm}^{-3}
$$

Radio (6 GHz)

KN NUCLEO-SYNTHESIS

observations
Pian et al. 2017, Smartt et al. 2017

models
Kasen et al. 2017, Tanaka et al. 2017
... solving relativistic radiation transport in a radioactive plasma. Calculate the thermal and ionization/excitation state of the ejecta and derive the wavelengthdependent opacity and emissivity using atomic-structure model data for multiple ions.

Models assume spherical symmetry, local thermodynamic equilibrium, and uniform abundances... The only three tunable parameters are an ejecta mass, a mean velocity and a fractional lanthanide abundance. Uncertainties in the current atomic line data sources hinder spectral analysis

DISCOVERY OF A KILONOVA

Shappee et al. 2017

Pian et al. 2017

Kilonova models predict nucleosynthesis of r-process elements. Lanthanides dominate radiation transport because of high opacity

KN NUCLEO-SYNTHESIS

models Kasen et al 2017

Three components

mass $\left(M_{\text {sun }}\right)$ velocity $\log \left(X_{\text {lan }}\right) t_{\text {rise }} t_{\text {de }}$ - red $0.040 \quad 0.15 c-1.5$ 1d $15 d$

- green $0.025 \quad 0.30 c \quad-4.0 \quad 2 / 3 d \quad 15 d$ blue $0.025 \quad 0.30 c \quad-5.0<0.5 d \quad 2 d$

Modelling seems on the right track. Long lived NS scenario is favoured

Neutron Star + Neutron Star long lived neutron star remnant

TIME DOMAIN

DISCOVERY OF A KILONOVA

Without GW signal AT2017gfo would not be discovered. Yet, kilo-novae are in a time domain that is monitored by current surveys

If all NS/NS merger produce kilonova they must be relatively rare

If we only had electromagnetic signal we will be left with some ambiguity.
Multi-messenger can break the degeneracy

Masses in the Stellar Graveyard
 in Solar Masses

THE FATE OF MASSIVE BINARY STARS

TRANSIENTS AND MULTI-MESSENGER SN 1987 A IN LMC

Progenitor direct identification

1-2 dozen progenitor detections
Detection of two dozen neutrinos still unique
where is the neutron star (or the BH)?
1985 Super-Kamiokande upgraded
1987 Nearest optical SN in $\sim 400 \mathrm{yr}$
Schmitz \& Gaskell 1988: very common SN type Pastorello et al 2012: 1-3\% of all core-collapse

FROM IMPOSTORS TO REAL SNE SN20091P

Pastorello et al. 2013 ApJ 767,1
Frazer et al. 2015 MNRAS 453, 3886

FROM IMPOSTORS TO REAL SNE

clones are being discovered (too many?)

Pastorello et al. 2018

STELLAR MERGERS ARE COMMON

Kochanek et al. 2014

V838 Mon: A major outburst in 2002 (Munari et al. 2002) Most likely the merger of $5-10 \mathrm{M}_{\odot}+0.3$? M_{\odot} (Tylenda \& Soker 2006)

2002-2006

MERGER V1309 SCO

Tylenda et al. 2011, A\&A, 528, A114 (see also Mason+ 2010, A\&A, 516, A108)

2007
Merger-powered

STELLAR MERGERS

1. Pre-outburst brightening
2. Early short-duration blue peak
3. Late red peak or a plateau (forest line Fell, Scll, Till)
4. Rapid decline. Molecular bands

Peak absolute magnitudes:

* RNe: $\mathrm{M}_{\mathrm{V}}<-10$ (to -4) mag LRNe: $\mathrm{M}_{\mathrm{V}}>-10$ (to -15) mag

Pastorello et al. 2019a A\&A, 630, A75

STELLAR MERGERS

Metzger \& Pejcha 2017

- I peak: fast ejecta expanding in polar direction
- Il peak: shock in the equatorial plane
- red tail: dust formation in a coll dense shell

Pastorello et al. 2019

0
0
\vdots
\vdots
0
\vdots
\vdots
0
0
0
0
0

$L \propto M^{2-3}$ Kochanek et al. 2014
Current discovery rates

- 1-2 per decade in the MW
- 1-2 per year within 40 Mpc

LRN TO SN II

Morris \& Podsiadlowski 2007

Merging of a $15 \mathrm{M}_{\odot}$ and a $5 \mathrm{M}_{\odot}$

20.000 yr ago

explains the blue supergiant progenitor and the triple ring

Current transient alert rate $\sim 40 \times$ night

10 yr survey

$10.000 \mathrm{deg}^{2}$ per night limit 24 mag \times visit. stacked mag 27 real time alert latency 60 sec alerts per night 10.000.000

SEARCH FOR FAILED SUPERNOVAE

Progenitor
F606W
Progenitor
F814w
\ldots

A best candidate for direct collapse to black holeof a $25 \mathrm{M}_{\odot}$ RSG star

Not yet confirmed

Correlation of the rate of Type la supernovae with the parent galaxy properties: Light and shadows
 Greggio \& Cappellaro 2019

