

Jets at the extremes: the GLEAM and LAT view of blazars

Marcello Giroletti - INAF Istituto di Radioastronomia Daniele D'Antonio - Sydney University

The 2nd Pietro Baracchi Conference - Firenze - Oct 23rd, 2019

Outline

- Fermi & blazars at gamma rays (3LAC, 4LAC)
- MWA & blazars at low frequency (MWACS, GLEAM)

From MWACS-3LAC (Giroletti+16) to GLEAM-4LAC (D'Antonio+19)

Radio spectral properties of cores and extended regions in blazars in the MHz regime

D. d'Antonio,^{1*} M. Giroletti,² G. Giovannini^{1,2} and A. Maini^{1,2,3} ¹Dipartimento di Fisica e Astronomia, Università di Bologna, via Gobetti 93/2, 40129 Bologna, Italy ²INAF – IRA, via Gobetti 101, 40129 Bologna, Italy ³Department of Physics and Astronomy, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT Low-frequency radio surveys allow sources previously known and char radio frequency observations of bl us the GaLactic and Extraga

for gamma-ray blazars in a low frequency ($\nu < 240 \,\mathrm{MHz}$) survey, to characterise the

The Large Area Telescope (LAT) onboard Fermi

- 20 MeV 300 GeV gamma-ray telescope launched in 2008
- 2.4 sr field of view
- PSF: θ_{68%}~0.8° at 1 GeV
- operated in scanning mode, provides uniform sensitivity over whole sky in ~day time scale, ideal for
 - transients
 - MWL campaigns on single sources
 - all sky survey and population studies
- public data, available within 12 h

Gamma-ray Space Telescope Evolution of Fermi Catalogues

- longer exposure & improved analysis methods
 - instrument characterisation, diffuse model, counterpart catalogues, etc.
- Each catalogue accompanied by an AGN *n*LAC catalogue
- Other catalogues focused on specific classes (pulsars, GRBs) or energy ranges
 - *n*FHL catalogues useful to beat confusion

name	Δt	# src	% unass.	reference
0FGL	3 months	205	18%	Abdo et al. (2009)
1FGL	11 months	1451	43%	Abdo et al. (2010)
2FGL	2 years	1873	31%	Nolan et al. (2012)
3FGL	4 years	3033	33%	Acero et al. (2015)
4FGL	8 years	5065	26%	https://arxiv.org/abs/1902.10045

PI AST

Eight year data (4FGL-4LAC)

- Preliminary versions of 4FGL/4LAC available
 - 8 years of exposure
 - 50 MeV < E < 1 TeV
 - updated model for Galactic diffuse emission
 - 5065 sources
 - 3130 associated with blazars
 - ~50 "misaligned" AGNs

data: https://fermi.gsfc.nasa.gov/ssc/data/access/lat/8yr_catalog/ 4FGL early release: https://arxiv.org/abs/1902.10045 4LAC early release: https://arxiv.org/abs/1905.10771

blazars in a nutshell

- Blazars=flat spectrum radio quasars (FSRQ)+BL Lac type objects (BLL)
- beamed counterparts of radio galaxies, dominated by emission from relativistic jets powered by accretion on SMBH
 - FSRQ: strong lines in optical spectra, prominent accretion disk signature, high radio and bolometric luminosity (FR2 counterparts), "red" SEDs
 - BLL: weak or no lines, radiatively inefficient accretion disk, low luminosity (FR1 counterparts), "blue" SEDs
- BCUs are intermediate/transitional/unconstrained blazars

Y rays and low radio frequency

- Not the best option from physical point of view but...
 - large surveys are available
 - interesting to compare blazar cores and extended regions
- MWACS=MWA commissioning survey (Hurley-Walker+15)
- simultaneous 120, 150, 180 MHz
- 6100 deg², 120 mJy 5 σ sensitivity,
- 14110 sources... how many (gam
- about 1% (and 0.5% detected by

data	3LAC sources detected in M			
Ω' recolution	Total	80/174		
, 3 resolution	FSRQ	52/71	•	
nma-ray) blazars?	BLLacs	19/87		
v Fermi)	BCU	8/16		

A CFISICA Beyond 3LAC-MWACS: 4LAC-GLEAM MWACS-3LAC GLEAM-4LAC 1400 D'Antonio+19 1050 • 20 separate v-bands in 72-230 MHz range n sources 700 AM 350 rate $\left(\right)$ 0% FSRQ BL Lacs BCUs Total 100 2% ion rate (%) 8% 75 6% 50 detect 25 Hurley-Walker+17 0 BL Lacs BCUs FSRQ Total

- GLEAM: wider area & deeper sensitivity
- 307455 sources (22x MWACS)

		3LAC-N	IWACS	4LAC-GLEA	
	Class	ratio	det rate	ratio	det
	total	87/247	35%	1274/1827	7
	FSRQ	52/71	73%	406/440	9
	BL Lacs	19/87	22%	384/659	5
	BCU	16/89	18%	456/689	6
			And a start		and the second

S_{GHz} and S_{V} distributions

- Essentially all radio bright γ-blazars are detected at low-v
- γ-ray blazars can have also rather faint S_{GHz} - on which GLEAM can tell little

- some intermediate $S_{GHz} \gamma$ -blazars likely missing in GLEAM because of an
- even for the faintest blazars

inverted spectrum (but effect now alleviated in comparison to MWACS)

• In γ rays, the detection rate decreases progressively but still not negligible

Spectral properties

- - entire GLEAM: $<\alpha_{low}>=0.77 \pm 0.01$
 - γ -ray blazars (GLEAM): $\langle \alpha_{low} \rangle = 0.44 \pm 0.01$
 - γ -ray blazars (MWACS): $\langle \alpha_{low} \rangle = 0.50 \pm 0.09$
- beamed cores remain important at low-v

blazars are significantly flatter than the average GLEAM source

S_{low} - S_{γ} "correlation"

- broad trend of connection between S_{GLEAM} and 4FGL energy flux
 - 652 sources, r=0.27, chance $p=<10^{-6}$
- Significant improvement thanks to increased size sample; MWACS had:
 - 82 sources, *r*=0.27, chance *p*=0.06
- Still much more scattered than when using cm-λ data:
 - un-beamed lobes become important at low-v

- More and more *all-sky* monitors (*Fermi*, GW, IC, ...)
- Most SKA precursors in Southern hemisphere
- North-South long baseline critical for many science cases
- Australian and African VLBI dishes crucial to high resolution for SKA1 (both MID and LOW)

Structured relativistic jets formed after BNS merger (Ghirlanda et al. 2019, Science)

EVN+LBA+VLBA

EVN+LBA *e-VLBI* observations of the first γ-NLSy1

Take home messages

- 1. *Fermi* (and CTA) provide **all-sky** survey for energetic universe (over 5000 sources, 3100 blazars and counting)
- 2. Synergy with **low frequency** fundamental to classify and understand sources
- 3. ITA-AUS should work together on this including VLBI

