

International Centre for Radio Astronomy Research

Rapid radio follow-up of high-energy astrophysical events

Gemma Anderson ICRAR-Curtin University The 2nd Pietro Baracchi Conference gemma.anderson@curtin.edu.au

Government of Western Australia Department of the Premier and Cabinet Office of Science

Radio Transients

Flare Stars

Tidal disruption Events

All require rapid and automatic radio triggering!

(1) GRB / flare star / XRB

RAPID-RESPONSE RADIO TELESCOPES

(2) Swift Burst Alert Telescope

γ-rays

(3) Position transmitted

Radio Afterglow 1-20 GHz

Radio FRB 80-300 MHz

MWA

(4) Response <20 s

(4) Response 2-10 min

ATCA

Radio triggering history

ICRAR

Cambridge: 1990's 151 MHz, BATSE GRBs e.g. Green et al. (1995)

Mt Pleasant (2011-2012) 2.3 GHz, 5 Swift GRBs Palaniswamy et al. (2014)

Parkes 12m dish (2010-2011) 1.4 GHz 9 Swift GRBs Bannister et al. (2012)

Gemma Anderson, The 2nd Pietro Baracchi (24 Oct 2019)

Current radio triggering experiments

Arcminute Microkelvin Imager

ICRAR

Murchison Widefield Array

AMI (2012 -), 14-18 GHz Response > 2min SWIFT GRBs, flare stars, XRBs, magnetars Staley et al. (2013)

ATCA (2017 -) 1-20 GHz, Response < 10 min Swift GRBs, Swift/MAXI flare stars e.g. Anderson et al. (2018), GCN

LOFAR (2018 -) 3-5 min HBA: 120-168 MHz Swift GRBs, aLIGO/Virgo GWs e.g. Rowlinson et al. (2019)

MWA (2014 -) <20s 80-133 MHz Swift/Fermi GRBs, flare stars, aLIGO/Virgo GWs e.g. Kaplan et al. (2015)

Low Frequency Array

Status of Australian Radio Telescope's rapid-response modes

Australia Telescope Compact Array

- ToO overrides all active programs if:
 Proposal score > minimum schedule score
- <10 min response time
- Override all correlator modes (1-20 GHz)
- VOEvent triggers on SGRBs and flare stars <u>https://github.com/mebell/vo_atca</u>
 Used AMI - 4 Pi Sky VOEvent Broker: <u>https://4pisky.org/voevents/</u>

SGRBs – Swift-BAT and Flare Stars – Swift-BAT, MAXI

- Active since April 2017:
- First successful SGRB trigger Dec 2018 (Anderson et al. in prep)
- First successful flare star trigger Jan 2019

Table 1: Unsuccessful ATCA override triggers

Reason	SGRB	LGRB	Other
Observatory software	2	1	0
VOEvent parsing	1	0	0
Maintenance/reconfiguration	1	0	0
VLBI	1	1	0
Correlator mode	0	2	1
Total	5	4	1

Status of Australian Radio Telescope's

rapid-response modes

Murchison Widefield Array

- Upgraded Aug 2018
- Front-end service and VOEvent parser: <u>https://github.com/MWATelescope/mwa_trigger</u>
- ToO override depending on active program's in the constellation in in the constellation in
- Observations begin (6-14s) <20s
- 30 mins, 0.5s/10 kHz
- Voltage Capture System (VCS)

SGRBs – Swift-BAT and Fermi-GBM LGRBs – Swift-BAT Flare Stars – Swift-BAT, MAXI

- Fermi position update repointing
- Sun suppression

Hancock, Anderson et al. (2019), PASA accepted, arXiv:1910.02387

ICRAR

High frequency (GHz) Science Case

Incoherent (synchrotron) transients Gamma-ray bursts rapid-triggering

Spectrum and light curve modelling (radio)

- SSA peak -> minimum energy
- B field and internal energy f(source size)
- Probe circumburst medium

High frequency (GHz) Science Case Incoherent (synchrotron) transients Gamma-ray bursts rapid-triggering Test Fireball model – REVERSE shock detection

Anderson et al. (2014), MNRAS, 440, 2059

High frequency (GHz) Science Case

Incoherent (synchrotron) transients Flare stars (rapidly rotating M dwarfs and RS CVn) X-ray/Gamma-ray superflare -> giant gyrosychrotron radio flare

Radio studies

ICRAR

- Probe electron population
- Brightness temperature
- KE and B field
- Gyrosynchrotron >5 GHz
- Circularly polarised coherent flares < 5GHz

DG CVn (rapidly-rotation M dwarf)

Fender, Anderson et al. (2015), MNRAS, 446, L66

High frequency (GHz) Science Case Incoherent (synchrotron transients) Flare stars (rapidly rotating M dwarfs and RS CVn)

X-ray/Gamma-ray superflare -> giant gyrosychrotron radio flare

AT Mic: ATCA trigger on MAXIdetected flare

Anderson et al. in prep

Gamma-ray Bursts (GRB) – Prompt emission

- X-ray studies late-time energy injection: magnetar?
- Theories link coherent prompt (FRB-like) or persistent (dipole radiation) emission
- Models SGRBs (aka BNS GW mergers) and LGRBs
- Merger products EoS of nuclear matter

ICRAR

Hancock, Anderson et al. (2019), PASA accepted, arXiv:1910.02387 Gemma Anderson, The 2nd Pietro Baracchi (24 Oct 2019)

Gamma-ray Bursts (GRB) – Prompt emission

- X-ray studies late-time energy injection: magnetar?
- Theories link coherent prompt (FRB-like) or persistent (dipole radiation) emission
- Models SGRBs (aka BNS GW mergers) and LGRBs
- Merger products EoS of nuclear matter

ICRAR

Hancock, Anderson et al. (2019), PASA accepted, arXiv:1910.02387 Gemma Anderson, The 2nd Pietro Baracchi (24 Oct 2019)

Short Gamma-ray Bursts (SGRB) MWA trigger on SGRB 180805A

- Response 19s post-VOEvent
- Recording 83s post-burst

ICRAR

• Limits 0.5s, 5s, 30s, 2min, 30s

0.2 minute 0.0 185 MHz Flux Density (Jy) 0.25 0.00 0 -0.25 0.5 0.0 -0.5 2 250 500 750 1500 1750 Time post-burst (s)

- Flux predictions based on magnetar model
- Image dedispersion to come

Anderson et al. in prep! Watch this spacelemma Anderson, The 2nd Pietro Baracchi (24 Oct 2019)

LOFAR trigger on LGRB 180706A

• 4.5 min response

ICRAR

- Limits 30s, 2m, 5m, 10m, 2hr
- Most sensitive limit 1.7mJy/beam (3σ)

ICRAR

Automated transient capabilities of low frequency telescopes

Anderson et al. in prep

Automated transient capabilities of low frequency telescopes

Anderson et al. in prep

Comparisons to MWA

MWA is the most sensitive at early-times

Anderson et al. in prep

What about Gravitational Wave Events?

GW170817 – 40 Mpc

Anderson et al. in prep

Conclusions

- Australian telescopes with active rapid-response modes: Available to all observers!
 - ATCA largest frequency coverage, polarisation, sensitivity
 - MWA Fastest response time, good sensitivty
- High frequency (GHz) science case
 - GRB shock physics
 - Stellar flare physics
- Low frequency (MHz) science case

ICRAR

- GRBs search for prompt, coherent (FRB-like) radio signals
 - Dispersion delayed
 - Equation of state of nuclear matter

