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Locality	of	quantum	theory

Two	subsystems	A	and	B,	with	algebra	of	
observables	{Ai}	and	{Bi}

• For	any	two	subsystems	A	and	B,	a	unitary	
that	operates	on	A	only,	but	not	on	B,	can	only	
change	A’s	observables,	not	B’s.

No-signalling follows.	

It	also	follows	that	for	A	to	induce	a	change	on	
B,	or	viceversa,	A	and	B	have	to	directly	interact,	
or	to	interact	through	a	mediator.



A	problem

Is	it	possible	to	have	a	hybrid	system	
composed	of	a	quantum	system	
interacting	with	one	that	is	not	

quantum?

Q S



A	theory-independent	argument	for	
Quantum	Universality

DeWitt’s	idea:	the	‘totalitarian’	property	of	
quantum	theory	[D.	Deutsch,	Quantum,	
forthcoming.]

‘If	a	quantum	system	Q	couples to	another	
system	S,	then	S	must	be	quantum’

BUT:	the	argument	assumes	far	too	much...



A	system	is	‘non-classical’ if	it	has	at	least	
two	non-commuting variables	X	and	Z	

‘Non	commuting’	means	that	X	and	Z	
cannot	be	‘copied’	simultaneously	to	perfect	
accuracy.	

D.	Deutsch,	C.	Marletto,	Proc.	R.	Soc.	A,	2015.
C.	Marletto,	Proc.	R.	Soc.	A,	2016.

A	theory-independent	argument	for	
Quantum	Universality



Assume	these	general	principles:

1)Locality

2) 1:1

3)Interoperability	of	information

A	theory-independent	argument	for	
Quantum	Universality



System	Q System	S

This	system	is	assumed	
initially	to	have	only	one	
classical	observable,	say	Z.

This	system	is	assumed	to	have	
two	non-commuting		observables,	
say	X,	Z.

Theorem:	if	a	non-classical	system	Q	couples	to	another	system	S	
via	a	copy-like	interaction,	then	S	must	be	non-classical	as	well.

C.	Marletto,	V.	Vedral,	npj Quantum	Information,	2016

A	theory-independent	argument	for	
Quantum	Universality



Step	two: indirect	test	of	non-classicality

S

Q Q’

We	use	TWO	
quantum	systems	
as	probes	to	
check	if	S	is	non-
classical



Theorem	

If S	can	locally	mediate	entanglement
between	two	quantum	systems Q	and	Q’,	

S is	non-classical.

C.	Marletto,	V.Vedral,	npj Quantum	Information,	2017.
C.	Marletto,	V.	Vedral ,	Phys.	Rev.	Lett.	119,	2017.	



Two	applications:

1)Entanglement-based	witness	of	non-
classicality	in	gravity	

2)	A	local	model	for	the	AB	effect.	

S.	Bose	et	al.,	Phys.	Rev.	Lett.	119,	(2017).
C.	Marletto,	V.	Vedral ,	Phys.	Rev.	Lett.	119,	(2017).	

C.	Marletto,	V.Vedral ,	arxiv1906.03440



Are	all	phases	locally	acquired?
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The	phase	difference	at	each	point	along	the	path	has	a	well-defined	value,	because	it	
is	generated	by	the	local	action	of	the	field.		It	is	in	principle	measurable.	

Example:		interference	in	a	background	field

∆φ 𝑥0, 𝑥1 = 𝜑(𝑥0)- 𝜑(𝑥1)



The	AB	effect:	the	traditional	account

• The	phase	𝜑𝐴𝐵 observed	when	closing	the	interference	loop	
can	be	accounted	for	only	by	local	action	of	the	the	vector	
potential	on	the	charge	along	the	path.	

• The	phase	difference	∆φ 𝑟𝑅, 𝑟𝐿 between	two	points	is	
unobservable.
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ated at the point of the solenoid via the local interaction
between the electron’s and the solenoid’s fields, is then
available by measuring observables of the electron along
the path, which is travelling far from the solenoid in the
region where, semiclassically, the field is zero. Here we
finally resolve the issue of locality by quantising the EM
field: the phase is mediated by the entanglement between
the EM field and the charge, achieved by local quantum
coupling. In the fully quantum model the EM field is a
collection of quantum harmonic oscillators: even when
they are in their vacuum state, and hence semiclassically
the field is zero, the q-numbered observables of the field
are still coupled with the q-numbered observables of the
charge and of the solenoid at their respective points. This
gives a fully local account of the phase generation, which
is equivalent (not dramatically di↵erent, as some have
argued) to the account for all other EM phases.
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FIG. 1: (a): Scheme of a Mach-Zehnder-like setup for the AB
e↵ect. C is the charge, S is the solenoid. (b): Quantum net-
work illustrating the AB phase generation along the charge’s
path rc(t), via an idealised local gate (acting at each point
rc(t), involving the photon field F, where U = exp(iHAB).

Our proposed model bears out Vaidman’s [4] and Kang’s
semiclassical analyses [6, 7], as well as other quantised
models [12, 13], by explaining the interaction of the
charge and of the solenoid as mediated locally by pho-
tons. Specifically, the phase is generated by the entan-
glement between the charge and the field (which could be
vanishingly small, [4]). It is therefore not a surprise that
treatments of the AB e↵ect where the field is classical
are inadequate to model fully the phase formation: as we
showed with a general information-theoretic argument, a
classical field cannot be the mediator of entanglement,
[11].
Another major issue that was left open is that the pro-
posed thought experiments discriminating the model via
potentials and that via fields seem to require to vio-
late charge conservation or fermionic superselection rules
[6, 7]. We obviate this problem by proposing a state-
tomography in the subspace of a two-charge system,
which, interestingly, does not violate the charge conserva-
tion law or the fermionic superselection rule. This builds
on a recently devised scheme to detect single-electron en-
tanglement without violating superselection rules, [8].

We shall first propose a quantum network explaining how
the AB phase is generated via entanglement with the
field. Then we analyse how the phase a↵ects the ob-
servables of the charge, in the Heisenberg picture. This
clarifies how the phase is locally generated. Finally, we
propose an experiment to measure the phase di↵erence
with a tomographic reconstruction of the quantum state
of the charge without closing the full loop around the
solenoid.

The gate model.

The phenomenon by which the phase is generated is
the quantised version of the classical problem where two
sources interact electromagnetically, one of which (the
charge in our case) is slowly varying, [10]. For present
purposes, it is possible to approximate the interaction
between the charge and the solenoid as the composition
of two processes: one is the slow motion of the electron
with velocity v along a (possibly superposed) path; the
other, defined for each point rc along the charge path, is
the process by which photons mediate the interaction be-
tween the charge and the solenoid, which happens on the
scale of the speed of light. We represent this by a phase
gate U which establishes the phase between two static
sources (the charge at rc and the solenoid at rs). The re-
sulting dynamics, combination of both processes, approx-
imates the dynamics generated by an e↵ective Hamilto-
nian representing the dynamical exchange between the
slowly varying charge distribution and the solenoid. Note
that this is not a static e↵ect, because the distribution
of the charge is non-stationary (albeit slowly varying).
We restrict attention to this quantum-information model
because our purpose is to demonstrate the local mecha-
nism by which the phase is generated and built up along
the path of the charge, rather than by providing a full
quantum-field theory model of the AB phase.

Consider three subsystems - the charge located at rc,
the solenoid located in rs and the EM field F . Con-
sider the Mach-Zehnder setup of figure 1, where rR is
a point on the right path, and rL is the corresponding
point on the left path. We will represent the space of
observables of the three systems as H = HC ⌦FR ⌦HC ,
where each of HC and HC is the Hilbert space of a sin-
gle qubit and F denotes the Fock space of the photon
field. We shall model the charge as a qubit at each point
rc along the path. Its observables are generated by the

operators (q(C)
x , q

(C)
y , q

(C)
z ); the operator q

(C)
z represents

the observable ‘whether the charge is on the left or on the
right of the solenoid’, so that its eigenstate |0i represents
a sharp position on the left (with eigenvalue �1) and |1i
on the right (with eigenvalue +1). The solenoid will also

be modelled as a qubit, whose z component q
(S)
z repre-

sents its presence/absence from the relevant point in the
Mach-Zehnder interferometer. Although the solenoid op-
erates in the completely classical regime, it will be acted
on by a quantum gate that couples locally the field with

∆φ 𝑟𝑅, 𝑟𝐿 = =
ℏ
(∫ 𝐴 ⋅ 𝑑𝑙 −EF
E0

∫ 𝐴 ⋅ 𝑑𝑙)EG
E0

Y.	Aharonov,	and	D.	Bohm,	Phys.	Rev.	115,	485,	1959.
Y.	Aharonov,	E.	Cohen,	and D.	Rohrlich,	Phys.	Rev.	A,	93,	4,	2016.



Vaidman’s idea	for	a	field-based	
explanation

• The	AB	phase	is	in	fact	due	to	the	interaction	between	the	
magnetic	field	BS of	the	solenoid	and	the	magnetic	field	of	
the	charge	Bc at	the	solenoid’s	point.	

• Entanglement	between	S	and	Q		is	needed	to	mediate	the	
effect

(L.	Vaidman,	Phys.	Rev.	A	86,	040101,	2012.)

• The	value	of	the	phase	difference	when	the	charge	has	not	
yet	closed	the	loop	is	a	gauge-invariant	quantity,	in	
principle	detectable.	
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ated at the point of the solenoid via the local interaction
between the electron’s and the solenoid’s fields, is then
available by measuring observables of the electron along
the path, which is travelling far from the solenoid in the
region where, semiclassically, the field is zero. Here we
finally resolve the issue of locality by quantising the EM
field: the phase is mediated by the entanglement between
the EM field and the charge, achieved by local quantum
coupling. In the fully quantum model the EM field is a
collection of quantum harmonic oscillators: even when
they are in their vacuum state, and hence semiclassically
the field is zero, the q-numbered observables of the field
are still coupled with the q-numbered observables of the
charge and of the solenoid at their respective points. This
gives a fully local account of the phase generation, which
is equivalent (not dramatically di↵erent, as some have
argued) to the account for all other EM phases.
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FIG. 1: (a): Scheme of a Mach-Zehnder-like setup for the AB
e↵ect. C is the charge, S is the solenoid. (b): Quantum net-
work illustrating the AB phase generation along the charge’s
path rc(t), via an idealised local gate (acting at each point
rc(t), involving the photon field F, where U = exp(iHAB).

Our proposed model bears out Vaidman’s [4] and Kang’s
semiclassical analyses [6, 7], as well as other quantised
models [12, 13], by explaining the interaction of the
charge and of the solenoid as mediated locally by pho-
tons. Specifically, the phase is generated by the entan-
glement between the charge and the field (which could be
vanishingly small, [4]). It is therefore not a surprise that
treatments of the AB e↵ect where the field is classical
are inadequate to model fully the phase formation: as we
showed with a general information-theoretic argument, a
classical field cannot be the mediator of entanglement,
[11].
Another major issue that was left open is that the pro-
posed thought experiments discriminating the model via
potentials and that via fields seem to require to vio-
late charge conservation or fermionic superselection rules
[6, 7]. We obviate this problem by proposing a state-
tomography in the subspace of a two-charge system,
which, interestingly, does not violate the charge conserva-
tion law or the fermionic superselection rule. This builds
on a recently devised scheme to detect single-electron en-
tanglement without violating superselection rules, [8].

We shall first propose a quantum network explaining how
the AB phase is generated via entanglement with the
field. Then we analyse how the phase a↵ects the ob-
servables of the charge, in the Heisenberg picture. This
clarifies how the phase is locally generated. Finally, we
propose an experiment to measure the phase di↵erence
with a tomographic reconstruction of the quantum state
of the charge without closing the full loop around the
solenoid.

The gate model.

The phenomenon by which the phase is generated is
the quantised version of the classical problem where two
sources interact electromagnetically, one of which (the
charge in our case) is slowly varying, [10]. For present
purposes, it is possible to approximate the interaction
between the charge and the solenoid as the composition
of two processes: one is the slow motion of the electron
with velocity v along a (possibly superposed) path; the
other, defined for each point rc along the charge path, is
the process by which photons mediate the interaction be-
tween the charge and the solenoid, which happens on the
scale of the speed of light. We represent this by a phase
gate U which establishes the phase between two static
sources (the charge at rc and the solenoid at rs). The re-
sulting dynamics, combination of both processes, approx-
imates the dynamics generated by an e↵ective Hamilto-
nian representing the dynamical exchange between the
slowly varying charge distribution and the solenoid. Note
that this is not a static e↵ect, because the distribution
of the charge is non-stationary (albeit slowly varying).
We restrict attention to this quantum-information model
because our purpose is to demonstrate the local mecha-
nism by which the phase is generated and built up along
the path of the charge, rather than by providing a full
quantum-field theory model of the AB phase.

Consider three subsystems - the charge located at rc,
the solenoid located in rs and the EM field F . Con-
sider the Mach-Zehnder setup of figure 1, where rR is
a point on the right path, and rL is the corresponding
point on the left path. We will represent the space of
observables of the three systems as H = HC ⌦FR ⌦HC ,
where each of HC and HC is the Hilbert space of a sin-
gle qubit and F denotes the Fock space of the photon
field. We shall model the charge as a qubit at each point
rc along the path. Its observables are generated by the

operators (q(C)
x , q

(C)
y , q

(C)
z ); the operator q

(C)
z represents

the observable ‘whether the charge is on the left or on the
right of the solenoid’, so that its eigenstate |0i represents
a sharp position on the left (with eigenvalue �1) and |1i
on the right (with eigenvalue +1). The solenoid will also

be modelled as a qubit, whose z component q
(S)
z repre-

sents its presence/absence from the relevant point in the
Mach-Zehnder interferometer. Although the solenoid op-
erates in the completely classical regime, it will be acted
on by a quantum gate that couples locally the field with
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the solenoid, the charge with the field; but not the charge
and the solenoid directly with one another. Each compo-
nent of the charge qubit is a generator of the Pauli algebra

on H and it can be represented as q(C)
↵ = �↵⌦I⌦I where

�↵, ↵ 2 {x, y, z}, is the element of the Pauli matrices op-

erating on HQ; likewise, q
(S)
↵ = I⌦ I⌦ �↵. The field is a

collection of N harmonic oscillators in momentum space,
each mode k represented by bosonic creation and annihi-
lation operators ak, a

†
k. We define them on the whole of

H, so that they act trivially on the qubits: ak = I⌦âk⌦I,
where âk is the annihilation operator acting on the mode
k in F only.

The fast coupling between the charge and the solenoid,
corresponding to the phase gate U in figure 1, is gener-
ated by this e↵ective Hamiltonian:

HAB = ECq
(C)
z + ESq

(S)
z +

X

k

~!ka
†
kak (1)

+
X

k

~Ckq
(C)
z (ake

ikrc + a
†
ke

�ikrc)

+
X

k

~Gkq
(S)
z (ake

ikrs + a
†
ke

�ikrs)

where EC and ES are the free energies of the charge and
the solenoid; !k and k represent the photon frequency
and wavenumber of the mode respectively; the index 1
indicates the charge, while 2 indicates the solenoid. The
Hamiltonian acts on a fixed time interval T which rep-
resent the time for light to travel from the charge to the
solenoid and back again. It is assumed to be far smaller
than the time taken by the charge to complete its path
around the solenoid, so U = exp

�
�

i
~HABT

�
.

We have also introduced the real-valued interaction con-
stants Ck – which couples the charge at a generic location
rc to the k-th mode of the EM field; and the interac-
tion constant Gk which couples the source at location
rs (the infinite solenoid) to the k-th mode of the EM
field. Here we will consider a solenoid of infinite length
and constant current j. This Hamiltonian applies to any
phase generation, not just the AB phase, provided one
choses the appropriate coupling constants. For instance,
it can describe the generation of the phase due to the
Coulomb interaction between the two charges, setting
Ck = Gk /

q1q2
k2 , [10].

It is possible to diagonalise the Hamiltonian in
the photon sector by applying the following uni-
tary transformation (a generalised displacement
operator): T

.
= ⇧k exp [�(̂a†k � ̂

†
ak)], where

̂ = �

✓
Ck

!k
e
�ikrc

◆
q
(C)
z �

✓
Gk

!k
e
�ikrs

◆
q
(S)
z .

The diagonalised Hamiltonian is

Hd =
X

k

ECq
(C)
z + ESq

(S)
z

+
X

k

~!k(a
†
kak + |↵|

2) + 2
~(C2

k +G
2
k)

!k

+
X

k

4
~CkGk

!k
cos[k(rc � rs)] q

(C)
z q

(S)
z ,

(2)

where ↵ = (Ck
!k

e
�ikrc + Gk

!k
e
�ikrs).

By using the above transformations, assuming that the
charge is in a sharp position state |1i at rc on the right of
the solenoid and the solenoid is in a sharp position state
|1i at rs , the vacuum-to-vacuum transition amplitude is
computed as follows:

h1|ch0|F h1|s exp (�i
HAB

~ T )|1ic|0iF |1is = (3)

exp{�i

⇣
⇠ + �̃(rc � rs)

⌘
T}

where:

⇠ =
1

~
X

k

✓
EC + ES + 4~C

2
k +G

2
k

!k

◆

is the phase which does not depend on the mutual posi-
tion of solenoid and charge and the position-dependent
phase is

�̃(rc, rs)
.
=

1

~
X

k

✓
8~CkGk

!k
cos (k(rc � rs))

◆
.

As customary in quantum gates, we will set T = 1 from
now on. Now, let us introduce the classical EM inter-
action energy between a charged particle and an infinite
solenoid, a gauge-independent quantity defined as:

E =
1

2

Z

V
(
BsBc

µ0
+ ✏0EsEc)d

3
r ,

where Bc and Ec are the classical magnetic and elec-
tric fields generated by the charge located in rc; Bs and
Es are the electric and magnetic fields generated by an
infinite solenoid positioned in rs.
We will fix the interaction constants Ck, Gk of the
e↵ective Hamiltonian, by requiring that the position-
dependent phase �̃(rc, rs) in the continuum limit (V is
the standard normalisation volume):

�(rc, rs)
.
=

⇢
1

~V

Z
d3k

✓
8~G(k)C(k)

!k

◆
cos (k(rc � rs))

�

(K.	Kang,	Journal	of	the	Korean	Physical	Society,	71,		9,	2017.	
M.	Kim,	K.	Kang,	N.	J.	Phys,	20,	2018.)



...But	what	about	locality?

The field-based semiclassical model for the AB 
phase generation is still non-local: how do the 
charge’s observables come to depend on the 
phase, if the latter is generated locally at the 
solenoid through the field-field interaction?
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ated at the point of the solenoid via the local interaction
between the electron’s and the solenoid’s fields, is then
available by measuring observables of the electron along
the path, which is travelling far from the solenoid in the
region where, semiclassically, the field is zero. Here we
finally resolve the issue of locality by quantising the EM
field: the phase is mediated by the entanglement between
the EM field and the charge, achieved by local quantum
coupling. In the fully quantum model the EM field is a
collection of quantum harmonic oscillators: even when
they are in their vacuum state, and hence semiclassically
the field is zero, the q-numbered observables of the field
are still coupled with the q-numbered observables of the
charge and of the solenoid at their respective points. This
gives a fully local account of the phase generation, which
is equivalent (not dramatically di↵erent, as some have
argued) to the account for all other EM phases.
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FIG. 1: (a): Scheme of a Mach-Zehnder-like setup for the AB
e↵ect. C is the charge, S is the solenoid. (b): Quantum net-
work illustrating the AB phase generation along the charge’s
path rc(t), via an idealised local gate (acting at each point
rc(t), involving the photon field F, where U = exp(iHAB).

Our proposed model bears out Vaidman’s [4] and Kang’s
semiclassical analyses [6, 7], as well as other quantised
models [12, 13], by explaining the interaction of the
charge and of the solenoid as mediated locally by pho-
tons. Specifically, the phase is generated by the entan-
glement between the charge and the field (which could be
vanishingly small, [4]). It is therefore not a surprise that
treatments of the AB e↵ect where the field is classical
are inadequate to model fully the phase formation: as we
showed with a general information-theoretic argument, a
classical field cannot be the mediator of entanglement,
[11].
Another major issue that was left open is that the pro-
posed thought experiments discriminating the model via
potentials and that via fields seem to require to vio-
late charge conservation or fermionic superselection rules
[6, 7]. We obviate this problem by proposing a state-
tomography in the subspace of a two-charge system,
which, interestingly, does not violate the charge conserva-
tion law or the fermionic superselection rule. This builds
on a recently devised scheme to detect single-electron en-
tanglement without violating superselection rules, [8].

We shall first propose a quantum network explaining how
the AB phase is generated via entanglement with the
field. Then we analyse how the phase a↵ects the ob-
servables of the charge, in the Heisenberg picture. This
clarifies how the phase is locally generated. Finally, we
propose an experiment to measure the phase di↵erence
with a tomographic reconstruction of the quantum state
of the charge without closing the full loop around the
solenoid.

The gate model.

The phenomenon by which the phase is generated is
the quantised version of the classical problem where two
sources interact electromagnetically, one of which (the
charge in our case) is slowly varying, [10]. For present
purposes, it is possible to approximate the interaction
between the charge and the solenoid as the composition
of two processes: one is the slow motion of the electron
with velocity v along a (possibly superposed) path; the
other, defined for each point rc along the charge path, is
the process by which photons mediate the interaction be-
tween the charge and the solenoid, which happens on the
scale of the speed of light. We represent this by a phase
gate U which establishes the phase between two static
sources (the charge at rc and the solenoid at rs). The re-
sulting dynamics, combination of both processes, approx-
imates the dynamics generated by an e↵ective Hamilto-
nian representing the dynamical exchange between the
slowly varying charge distribution and the solenoid. Note
that this is not a static e↵ect, because the distribution
of the charge is non-stationary (albeit slowly varying).
We restrict attention to this quantum-information model
because our purpose is to demonstrate the local mecha-
nism by which the phase is generated and built up along
the path of the charge, rather than by providing a full
quantum-field theory model of the AB phase.

Consider three subsystems - the charge located at rc,
the solenoid located in rs and the EM field F . Con-
sider the Mach-Zehnder setup of figure 1, where rR is
a point on the right path, and rL is the corresponding
point on the left path. We will represent the space of
observables of the three systems as H = HC ⌦FR ⌦HC ,
where each of HC and HC is the Hilbert space of a sin-
gle qubit and F denotes the Fock space of the photon
field. We shall model the charge as a qubit at each point
rc along the path. Its observables are generated by the

operators (q(C)
x , q

(C)
y , q

(C)
z ); the operator q

(C)
z represents

the observable ‘whether the charge is on the left or on the
right of the solenoid’, so that its eigenstate |0i represents
a sharp position on the left (with eigenvalue �1) and |1i
on the right (with eigenvalue +1). The solenoid will also

be modelled as a qubit, whose z component q
(S)
z repre-

sents its presence/absence from the relevant point in the
Mach-Zehnder interferometer. Although the solenoid op-
erates in the completely classical regime, it will be acted
on by a quantum gate that couples locally the field with



C.	Marletto,	V.	Vedral ,	arxiv1906.03440
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the solenoid, the charge with the field; but not the charge
and the solenoid directly with one another. Each compo-
nent of the charge qubit is a generator of the Pauli algebra

on H and it can be represented as q(C)
↵ = �↵⌦I⌦I where

�↵, ↵ 2 {x, y, z}, is the element of the Pauli matrices op-

erating on HQ; likewise, q
(S)
↵ = I⌦ I⌦ �↵. The field is a

collection of N harmonic oscillators in momentum space,
each mode k represented by bosonic creation and annihi-
lation operators ak, a

†
k. We define them on the whole of

H, so that they act trivially on the qubits: ak = I⌦âk⌦I,
where âk is the annihilation operator acting on the mode
k in F only.

The fast coupling between the charge and the solenoid,
corresponding to the phase gate U in figure 1, is gener-
ated by this e↵ective Hamiltonian:
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where EC and ES are the free energies of the charge and
the solenoid; !k and k represent the photon frequency
and wavenumber of the mode respectively; the index 1
indicates the charge, while 2 indicates the solenoid. The
Hamiltonian acts on a fixed time interval T which rep-
resent the time for light to travel from the charge to the
solenoid and back again. It is assumed to be far smaller
than the time taken by the charge to complete its path
around the solenoid, so U = exp

�
�

i
~HABT

�
.

We have also introduced the real-valued interaction con-
stants Ck – which couples the charge at a generic location
rc to the k-th mode of the EM field; and the interac-
tion constant Gk which couples the source at location
rs (the infinite solenoid) to the k-th mode of the EM
field. Here we will consider a solenoid of infinite length
and constant current j. This Hamiltonian applies to any
phase generation, not just the AB phase, provided one
choses the appropriate coupling constants. For instance,
it can describe the generation of the phase due to the
Coulomb interaction between the two charges, setting
Ck = Gk /

q1q2
k2 , [10].

It is possible to diagonalise the Hamiltonian in
the photon sector by applying the following uni-
tary transformation (a generalised displacement
operator): T
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By using the above transformations, assuming that the
charge is in a sharp position state |1i at rc on the right of
the solenoid and the solenoid is in a sharp position state
|1i at rs , the vacuum-to-vacuum transition amplitude is
computed as follows:
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is the phase which does not depend on the mutual posi-
tion of solenoid and charge and the position-dependent
phase is
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.
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As customary in quantum gates, we will set T = 1 from
now on. Now, let us introduce the classical EM inter-
action energy between a charged particle and an infinite
solenoid, a gauge-independent quantity defined as:

E =
1

2

Z

V
(
BsBc

µ0
+ ✏0EsEc)d

3
r ,

where Bc and Ec are the classical magnetic and elec-
tric fields generated by the charge located in rc; Bs and
Es are the electric and magnetic fields generated by an
infinite solenoid positioned in rs.
We will fix the interaction constants Ck, Gk of the
e↵ective Hamiltonian, by requiring that the position-
dependent phase �̃(rc, rs) in the continuum limit (V is
the standard normalisation volume):
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.
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ated at the point of the solenoid via the local interaction
between the electron’s and the solenoid’s fields, is then
available by measuring observables of the electron along
the path, which is travelling far from the solenoid in the
region where, semiclassically, the field is zero. Here we
finally resolve the issue of locality by quantising the EM
field: the phase is mediated by the entanglement between
the EM field and the charge, achieved by local quantum
coupling. In the fully quantum model the EM field is a
collection of quantum harmonic oscillators: even when
they are in their vacuum state, and hence semiclassically
the field is zero, the q-numbered observables of the field
are still coupled with the q-numbered observables of the
charge and of the solenoid at their respective points. This
gives a fully local account of the phase generation, which
is equivalent (not dramatically di↵erent, as some have
argued) to the account for all other EM phases.

(b)

rL rR

r0

(a)

y
x U

C

F

S

C

S
rc(t) FS

C

FIG. 1: (a): Scheme of a Mach-Zehnder-like setup for the AB
e↵ect. C is the charge, S is the solenoid. (b): Quantum net-
work illustrating the AB phase generation along the charge’s
path rc(t), via an idealised local gate (acting at each point
rc(t), involving the photon field F, where U = exp(iHAB).

Our proposed model bears out Vaidman’s [4] and Kang’s
semiclassical analyses [6, 7], as well as other quantised
models [12, 13], by explaining the interaction of the
charge and of the solenoid as mediated locally by pho-
tons. Specifically, the phase is generated by the entan-
glement between the charge and the field (which could be
vanishingly small, [4]). It is therefore not a surprise that
treatments of the AB e↵ect where the field is classical
are inadequate to model fully the phase formation: as we
showed with a general information-theoretic argument, a
classical field cannot be the mediator of entanglement,
[11].
Another major issue that was left open is that the pro-
posed thought experiments discriminating the model via
potentials and that via fields seem to require to vio-
late charge conservation or fermionic superselection rules
[6, 7]. We obviate this problem by proposing a state-
tomography in the subspace of a two-charge system,
which, interestingly, does not violate the charge conserva-
tion law or the fermionic superselection rule. This builds
on a recently devised scheme to detect single-electron en-
tanglement without violating superselection rules, [8].

We shall first propose a quantum network explaining how
the AB phase is generated via entanglement with the
field. Then we analyse how the phase a↵ects the ob-
servables of the charge, in the Heisenberg picture. This
clarifies how the phase is locally generated. Finally, we
propose an experiment to measure the phase di↵erence
with a tomographic reconstruction of the quantum state
of the charge without closing the full loop around the
solenoid.

The gate model.

The phenomenon by which the phase is generated is
the quantised version of the classical problem where two
sources interact electromagnetically, one of which (the
charge in our case) is slowly varying, [10]. For present
purposes, it is possible to approximate the interaction
between the charge and the solenoid as the composition
of two processes: one is the slow motion of the electron
with velocity v along a (possibly superposed) path; the
other, defined for each point rc along the charge path, is
the process by which photons mediate the interaction be-
tween the charge and the solenoid, which happens on the
scale of the speed of light. We represent this by a phase
gate U which establishes the phase between two static
sources (the charge at rc and the solenoid at rs). The re-
sulting dynamics, combination of both processes, approx-
imates the dynamics generated by an e↵ective Hamilto-
nian representing the dynamical exchange between the
slowly varying charge distribution and the solenoid. Note
that this is not a static e↵ect, because the distribution
of the charge is non-stationary (albeit slowly varying).
We restrict attention to this quantum-information model
because our purpose is to demonstrate the local mecha-
nism by which the phase is generated and built up along
the path of the charge, rather than by providing a full
quantum-field theory model of the AB phase.

Consider three subsystems - the charge located at rc,
the solenoid located in rs and the EM field F . Con-
sider the Mach-Zehnder setup of figure 1, where rR is
a point on the right path, and rL is the corresponding
point on the left path. We will represent the space of
observables of the three systems as H = HC ⌦FR ⌦HC ,
where each of HC and HC is the Hilbert space of a sin-
gle qubit and F denotes the Fock space of the photon
field. We shall model the charge as a qubit at each point
rc along the path. Its observables are generated by the

operators (q(C)
x , q

(C)
y , q

(C)
z ); the operator q

(C)
z represents

the observable ‘whether the charge is on the left or on the
right of the solenoid’, so that its eigenstate |0i represents
a sharp position on the left (with eigenvalue �1) and |1i
on the right (with eigenvalue +1). The solenoid will also

be modelled as a qubit, whose z component q
(S)
z repre-

sents its presence/absence from the relevant point in the
Mach-Zehnder interferometer. Although the solenoid op-
erates in the completely classical regime, it will be acted
on by a quantum gate that couples locally the field with

For	a	local	account	of	the	AB	phase	generation	
via	fields,	we	need	to	quantise	the	mediating	

field.
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the path, which is travelling far from the solenoid in the
region where, semiclassically, the field is zero. Here we
finally resolve the issue of locality by quantising the EM
field: the phase is mediated by the entanglement between
the EM field and the charge, achieved by local quantum
coupling. In the fully quantum model the EM field is a
collection of quantum harmonic oscillators: even when
they are in their vacuum state, and hence semiclassically
the field is zero, the q-numbered observables of the field
are still coupled with the q-numbered observables of the
charge and of the solenoid at their respective points. This
gives a fully local account of the phase generation, which
is equivalent (not dramatically di↵erent, as some have
argued) to the account for all other EM phases.
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FIG. 1: (a): Scheme of a Mach-Zehnder-like setup for the AB
e↵ect. C is the charge, S is the solenoid. (b): Quantum net-
work illustrating the AB phase generation along the charge’s
path rc(t), via an idealised local gate (acting at each point
rc(t), involving the photon field F, where U = exp(iHAB).

Our proposed model bears out Vaidman’s [4] and Kang’s
semiclassical analyses [6, 7], as well as other quantised
models [12, 13], by explaining the interaction of the
charge and of the solenoid as mediated locally by pho-
tons. Specifically, the phase is generated by the entan-
glement between the charge and the field (which could be
vanishingly small, [4]). It is therefore not a surprise that
treatments of the AB e↵ect where the field is classical
are inadequate to model fully the phase formation: as we
showed with a general information-theoretic argument, a
classical field cannot be the mediator of entanglement,
[11].
Another major issue that was left open is that the pro-
posed thought experiments discriminating the model via
potentials and that via fields seem to require to vio-
late charge conservation or fermionic superselection rules
[6, 7]. We obviate this problem by proposing a state-
tomography in the subspace of a two-charge system,
which, interestingly, does not violate the charge conserva-
tion law or the fermionic superselection rule. This builds
on a recently devised scheme to detect single-electron en-
tanglement without violating superselection rules, [8].

We shall first propose a quantum network explaining how
the AB phase is generated via entanglement with the
field. Then we analyse how the phase a↵ects the ob-
servables of the charge, in the Heisenberg picture. This
clarifies how the phase is locally generated. Finally, we
propose an experiment to measure the phase di↵erence
with a tomographic reconstruction of the quantum state
of the charge without closing the full loop around the
solenoid.

The gate model.

The phenomenon by which the phase is generated is
the quantised version of the classical problem where two
sources interact electromagnetically, one of which (the
charge in our case) is slowly varying, [10]. For present
purposes, it is possible to approximate the interaction
between the charge and the solenoid as the composition
of two processes: one is the slow motion of the electron
with velocity v along a (possibly superposed) path; the
other, defined for each point rc along the charge path, is
the process by which photons mediate the interaction be-
tween the charge and the solenoid, which happens on the
scale of the speed of light. We represent this by a phase
gate U which establishes the phase between two static
sources (the charge at rc and the solenoid at rs). The re-
sulting dynamics, combination of both processes, approx-
imates the dynamics generated by an e↵ective Hamilto-
nian representing the dynamical exchange between the
slowly varying charge distribution and the solenoid. Note
that this is not a static e↵ect, because the distribution
of the charge is non-stationary (albeit slowly varying).
We restrict attention to this quantum-information model
because our purpose is to demonstrate the local mecha-
nism by which the phase is generated and built up along
the path of the charge, rather than by providing a full
quantum-field theory model of the AB phase.

Consider three subsystems - the charge located at rc,
the solenoid located in rs and the EM field F . Con-
sider the Mach-Zehnder setup of figure 1, where rR is
a point on the right path, and rL is the corresponding
point on the left path. We will represent the space of
observables of the three systems as H = HC ⌦FR ⌦HC ,
where each of HC and HC is the Hilbert space of a sin-
gle qubit and F denotes the Fock space of the photon
field. We shall model the charge as a qubit at each point
rc along the path. Its observables are generated by the
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the observable ‘whether the charge is on the left or on the
right of the solenoid’, so that its eigenstate |0i represents
a sharp position on the left (with eigenvalue �1) and |1i
on the right (with eigenvalue +1). The solenoid will also

be modelled as a qubit, whose z component q
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sents its presence/absence from the relevant point in the
Mach-Zehnder interferometer. Although the solenoid op-
erates in the completely classical regime, it will be acted
on by a quantum gate that couples locally the field with



• By using local tomography on each of the charge’s 
paths it is possible to measure how the phase 
difference is building up along the path, without 
coherently closing the interference loop. (Note issues 
with superselection rules.).

• If observed, this phase difference would refute the 
non-local, semiclassical, potential-based model.

AB	local	quantum	model	and	
experimental	consequences



Summary	for	AB	phase

• The issue of whether there exists a field-only 
expression for the quantum theory of interacting 
charged and EM fields is distinct from the issue of 
locality of the AB phase.

• There is a fully local quantum model for the AB phase 
generation, and it can be tested.



Conclusion

Locality is a universal guiding principle, obeyed by 
all quantum phases –including the AB phase.

It is a fundamental basis to construct future 
theories of physics that go beyond quantum 

theory.   


