Quantum time, and quantum time measurements

<u>Lorenzo Maccone</u>

Dip. Fisica, INFN Sez. Pavia, Universita' di Pavia

Seth Lloyd

Vittorio Giovannetti

Scuola Normale Superiore, Pisa

Juan Leon CSIC, Madrid

Krzysztof Sacha Uniwersytet Jagiellonski, Krakow

> FQXi Foundation, "The physics of what happens"

What I'm going to talk about

What I'm going to talk about

Time in quantum mechanics

a consistent formalization based on conditional probability amplitudes

What I'm going to talk about

Time in quantum mechanics

a consistent formalization based on conditional probability amplitudes

... and an application: how to define a time observable in QM

Time in quantum mechanics:

Time in quantum mechanics:

a classical parameter in the Schroedinger eq.

$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$$

Time in quantum mechanics:

a classical parameter in the Schroedinger eq.

$$i\hbar\frac{\partial}{\partial t}|\psi(t)
angle = \hat{H}|\psi(t)
angle$$

it indicates what is shown on the **clock** on the lab wall.

Time in quantum mechanics:

a classical parameter in the Schroedinger eq.

$$i\hbar\frac{\partial}{\partial t}|\psi(t)
angle = \hat{H}|\psi(t)
angle$$

it indicates what is shown on the **clock** on the **lab** wall.

a classical system!

Time in quantum mechanics:

a classical parameter in the Schroedinger eq.

$$i\hbar\frac{\partial}{\partial t}|\psi(t)
angle = \hat{H}|\psi(t)
angle$$

it indicates what is shown on the **clock** on the lab wall.

a classical system!

BUT - classical systems don't exist in a consistent theory of quantum mechanics

in a consistent theory of quantum mechanics (they're just a limiting situation)

Quantum Time

define: Time is "what is shown on a clock"

a clock

Quantum Time

define: Time is "what is shown on a clock"

a clock

e.g. a quantum particle on a line (or any other quantum system)

Quantum Time

define: Time is "what is shown on a clock"

ien use a quantum system as a clock

e.g. a quantum particle on a line (or any other quantum system)

 $\mathcal{H} \equiv \mathcal{L}^2(\mathbb{R})$ eigenbasis $\{|x\rangle\}$

Time and entanglement

Time arises as **correlations** between the system and the clock

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

 $\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$

time Hilbert space

system Hilbert space

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

time Hilbert space

system Hilbert space

constraint operator: $\hat{\mathbb{J}} := \hbar \hat{\Omega} \otimes \mathbb{1}_S + \mathbb{1}_T \otimes \hat{H}_S ,$

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

time Hilbert space

system Hilbert space

system Hamiltonian

constraint operator: _____ clock "momentum"

$$\hat{\mathbb{J}} := \hbar \hat{\Omega} \otimes \mathbb{1}_S + \mathbb{1}_T \otimes \hat{H}_S ,$$

all **physical** states satisfy the constraint: $\hat{\mathbb{J}}|\Psi
angle
angle=0$

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

time Hilbert space

system Hilbert space

system Hamiltonian

constraint operator: ______ clock "momentum"

$$\hat{\mathbb{J}} := \hbar \hat{\Omega} \otimes \mathbb{1}_S + \mathbb{1}_T \otimes \hat{H}_S ,$$

all **physical** states satisfy the constraint: $\hat{\mathbb{J}}|\Psi\rangle\rangle = 0$

bipartite state on $\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

time Hilbert space

constraint operator:

system Hilbert space

system Hamiltonian

$$\hat{\mathbb{J}} := \hbar \hat{\Omega} \otimes \mathbb{1}_S + \mathbb{1}_T \otimes \hat{H}_S ,$$

all **physical** states satisfy the constraint: $\hat{\mathbb{J}}|\Psi\rangle\rangle = 0$

bipartite state on $\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$

Page and Wootters [PRD **27**,2885 (1983)]

This means that for physical states the system Hamiltonian is the generator of *clock* time translations

$$\hat{\mathbb{J}} := \hbar \hat{\Omega} \otimes \mathbb{1}_S + \mathbb{1}_T \otimes \hat{H}_S ,$$

all **physical** states satisfy the constraint: $\hat{\mathbb{J}}|\Psi\rangle\rangle = 0$

bipartite state on $\mathfrak{H}:=\mathcal{H}_T\otimes\mathcal{H}_S$

The conventional state: from **Conditioning**

The conventional state: from **Conditioning**

to the time being *t*:

$$|\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$$

The conventional state: from **Conditioning**

to the time being *t*:

$$|\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$$

 $(\hbar\hat{\Omega}_T + \hat{H}_S)|\Psi\rangle\rangle = 0$

The conventional state: from **Conditioning**

• to the time being *t*:

$$|\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$$

 $_{T}\langle t|\langle \hbar\hat{\Omega}_{T}+\hat{H}_{S}\rangle|\Psi\rangle\rangle=0$

The conventional state: from **Conditioning**

• to the time being t: $|\psi(t)\rangle_S = T\langle t|\Psi\rangle\rangle$ $T_T\langle t|\Phi\hat{\Omega}_T + \hat{H}_S|\Psi\rangle\rangle = 0 \Leftrightarrow i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle_S = \hat{H}_S|\psi(t)\rangle_S$

The conventional state: from **Conditioning**

• to the time being *t*: $|\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$

 $T \langle t | \langle \hbar \hat{\Omega}_T + \hat{H}_S | \Psi \rangle \rangle = 0 \Leftrightarrow i \hbar \frac{\partial}{\partial t} | \psi(t) \rangle_S = \hat{H}_S | \psi(t) \rangle_S$ "position" representation=Schr eq.

The conventional state: from **Conditioning**

• to the time being *t*: $|\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$

 $T \langle t | (\hbar \hat{\Omega}_T + \hat{H}_S) | \Psi \rangle \rangle = 0 \Leftrightarrow i \hbar \frac{\partial}{\partial t} | \psi(t) \rangle_S = \hat{H}_S | \psi(t) \rangle_S$ "position" representation=Schr eq.

• to the energy being ω :

 $|\psi(\omega)\rangle_S = T\langle \omega|\Psi\rangle\rangle$,

The conventional state: from **Conditioning**

• to the time being *t*: $|\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$

 $T \langle t | (\hbar \hat{\Omega}_T + \hat{H}_S) | \Psi \rangle \rangle = 0 \Leftrightarrow i \hbar \frac{\partial}{\partial t} | \psi(t) \rangle_S = \hat{H}_S | \psi(t) \rangle_S$ "position" representation=Schr eq.

• to the energy being ω : $|\psi(\omega)
angle_S = {}_T\langle\omega|\Psi
angle
angle\;,$

$$_{T}\langle\omega|\hbar\hat{\Omega}_{T}+\hat{H}_{S}|\Psi\rangle\rangle=0\Leftrightarrow\hat{H}_{S}|\psi(\omega)\rangle_{S}=-\hbar\omega|\psi(\omega)\rangle_{S}$$

The conventional state: from **Conditioning**

• to the time being *t*: $|\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$

 $T \langle t | (\hbar \hat{\Omega}_T + \hat{H}_S) | \Psi \rangle \rangle = 0 \Leftrightarrow i \hbar \frac{\partial}{\partial t} | \psi(t) \rangle_S = \hat{H}_S | \psi(t) \rangle_S$ "position" representation=Schr eq.

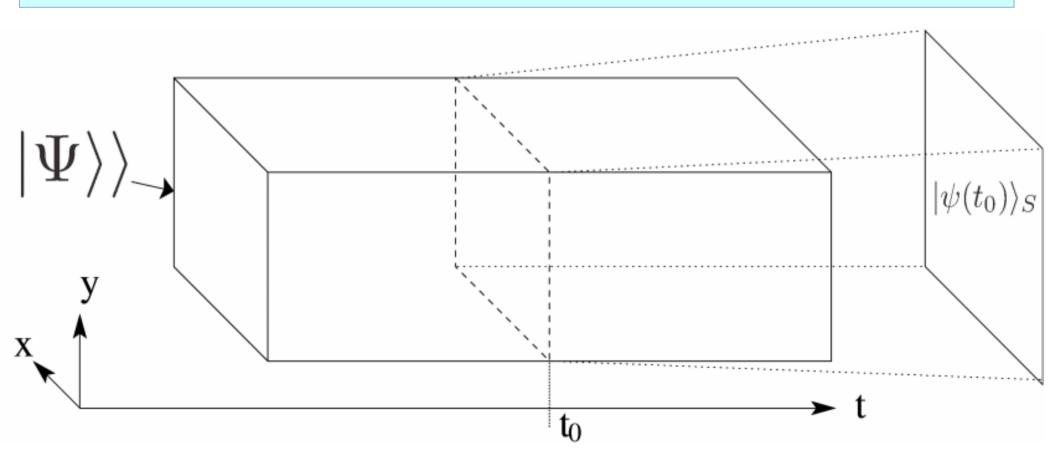
• to the energy being ω : $|\psi(\omega)
angle_S = {}_T\langle\omega|\Psi
angle
angle\;,$

$$_{T}\langle\omega|\hat{\hbar\Omega}_{T}+\hat{H}_{S}|\Psi\rangle\rangle=0\Leftrightarrow\hat{H}_{S}|\psi(\omega)\rangle_{S}=-\hbar\omega|\psi(\omega)\rangle_{S}$$

"momentum" representation=time indep. Schr eq.

what I've been saying is that

conventional qm arises in this framework through conditioning.



All $_{ ext{pure}}$ solutions to the WdW eq. $\hat{\mathbb{J}}|\Psi
angle
angle=0$

1

are of the form:

$$|\Psi\rangle\rangle = \int dt |t\rangle_T \otimes |\psi(t)\rangle_S$$

All _{pure} solutions to the WdW eq. $\hat{\mathbb{J}}|\Psi
angle
angle=0$

are of the form:

$$|\Psi\rangle\rangle = \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S$$

which means that the conventional state of the system at time $t |\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$

All _{pure} solutions to the WdW eq. $\hat{\mathbb{J}}|\Psi
angle
angle=0$

are of the form:

$$|\Psi\rangle\rangle = \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S$$

which means that the conventional state of the system at time $t |\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$

is a **conditioned state**: the state *given that* the time was *t*

time quantization

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

 $|\Phi\rangle\rangle = \int dt \, \phi(t) \, |t\rangle_T \otimes |\psi(t)\rangle_S ,$

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

 $|\Phi\rangle\rangle = \int dt \, \phi(t) \, |t\rangle_T \otimes |\psi(t)\rangle_S ,$

this does not necessarily imply that time is discrete!!

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

 $|\Phi\rangle\rangle = \int dt \, \phi(t) \, |t\rangle_T \otimes |\psi(t)\rangle_S ,$

this does not necessarily imply that time is discrete!!

(it's a **continuous** quantum degree of freedom with the choice $\mathcal{H} \equiv \mathcal{L}^2(\mathbb{R})$)

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

 $|\Phi\rangle\rangle = \int dt \, \phi(t) \, |t\rangle_T \otimes |\psi(t)\rangle_S ,$

this does not necessarily imply that time is discrete!!

dt t|t

(it's a **continuous** quantum degree of freedom with the choice $\mathcal{H}\equiv\mathcal{L}^2(\mathbb{R})$)

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

 $|\Phi\rangle\rangle = \int dt \, \phi(t) \, |t\rangle_T \otimes |\psi(t)\rangle_S ,$

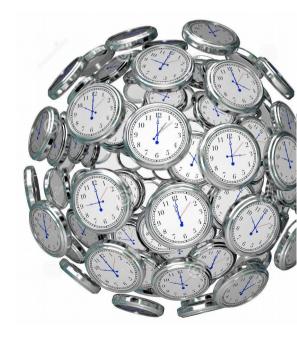
this does not necessarily imply that time is discrete!!

 $dt t|t\rangle$

(it's a **continuous** quantum degree of freedom with the choice $\mathcal{H} \equiv \mathcal{L}^2(\mathbb{R})$) Other choices are possible!! **Physical interpretation**

The time Hilbert space is the Hilbert space of the clock that **defines** time

remember: "time is what is measured by a clock"!



Physical interpretation

The time Hilbert space is the Hilbert space of the clock that **defines** time

remember: "time is what is measured by a clock"!

here: we used a Hilbert space for a particle on a line, appropriate for a continuous time that goes from $-\infty$ to $+\infty$

Physical interpretation

The time Hilbert space is the Hilbert space of the clock that **defines** time

remember: "time is what is measured by a clock"!

here: we used a Hilbert space for a particle on a line, appropriate for a continuous time that goes from $-\infty$ to $+\infty$

other choices are possible..

if the clock has finite energy, time is cyclic e.g. a spin (appropriate for certain closed cosmologies Up to now: the time Hilbert space is the Hilbert space of the clock that **defines** time

BUT, a physical interpretation of the time Hilbert space is **un-necessary**

Up to now: the time Hilbert space is the Hilbert space of the clock that **defines** time

BUT, a physical interpretation of the time Hilbert space is **un-necessary**

alternative:

It can be seen as an **abstract** purification space

Is entanglement important? Could we do with classical correlations?

$$\begin{split} |\Psi\rangle\rangle &= \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S \\ &= \int d\mu(\omega) \; |\omega\rangle_T \otimes |\psi(\omega)\rangle_S \; , \end{split}$$

Is entanglement important? Could we do with classical correlations?

$$\begin{split} |\Psi\rangle\rangle &= \int dt \ |t\rangle_T \otimes |\psi(t)\rangle_S \\ &= \int d\mu(\omega) \ |\omega\rangle_T \otimes |\psi(\omega)\rangle_S \end{split}$$
NO!

Is entanglement important? Could we do with classical correlations?

$$|\Psi\rangle\rangle = \int dt \ |t\rangle_T \otimes |\psi(t)\rangle_S$$

$$= \int d\mu(\omega) \ |\omega\rangle_T \otimes |\psi(\omega)\rangle_S$$

NO! Without entanglement there is no **Solution** (naively one would expect to either time-dep. or time-indep Sch. eq. but not both, but this not correct: neither solution is possible),

Is entanglement important? Could we do with classical correlations?

$$|\Psi\rangle\rangle = \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S$$

0

=
$$\int d\mu(\omega) |\omega\rangle_T \otimes |\psi(\omega)\rangle_S$$
,

NO! Without entanglement there is no **Solution** (naively one would expect to either time-dep. or time-indep Sch. eq. but not both, but this not correct: neither solution is possible),

$$\begin{split} {}_{T} \langle t \langle \hbar \hat{\Omega}_{T} + \hat{H}_{S} | \Psi \rangle \rangle &= 0 \Leftrightarrow i \hbar \frac{\partial}{\partial t} | \psi(t) \rangle_{S} = \hat{H}_{S} | \psi(t) \rangle_{S} \\ {}_{T} \langle \omega \langle \hbar \hat{\Omega}_{T} + \hat{H}_{S} | \Psi \rangle \rangle &= 0 \Leftrightarrow \hat{H}_{S} | \psi(\omega) \rangle_{S} = -\hbar \omega | \psi(\omega) \rangle_{S} , \end{split}$$

Our contribution

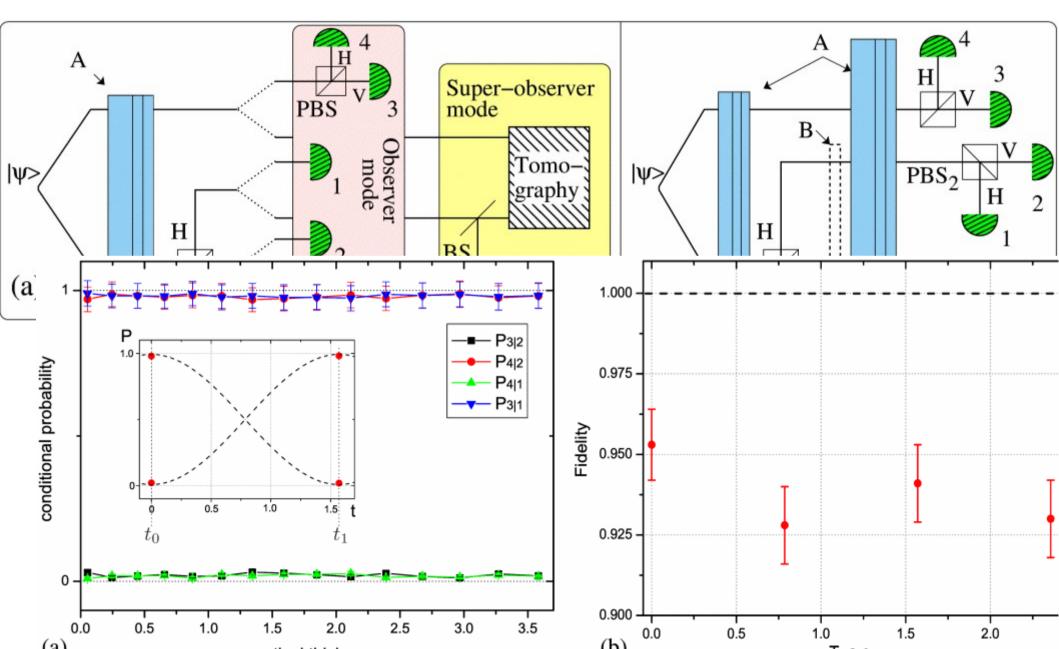
These ideas were basically abandoned in the 80s: because of objections (Kuchar, Unruh, etc.)

What Eyer

We removed these objections

... and also perfected the model (e.g. role of entanglement, momentum representation)

Experimental realization (collaboration with the INRIM group)



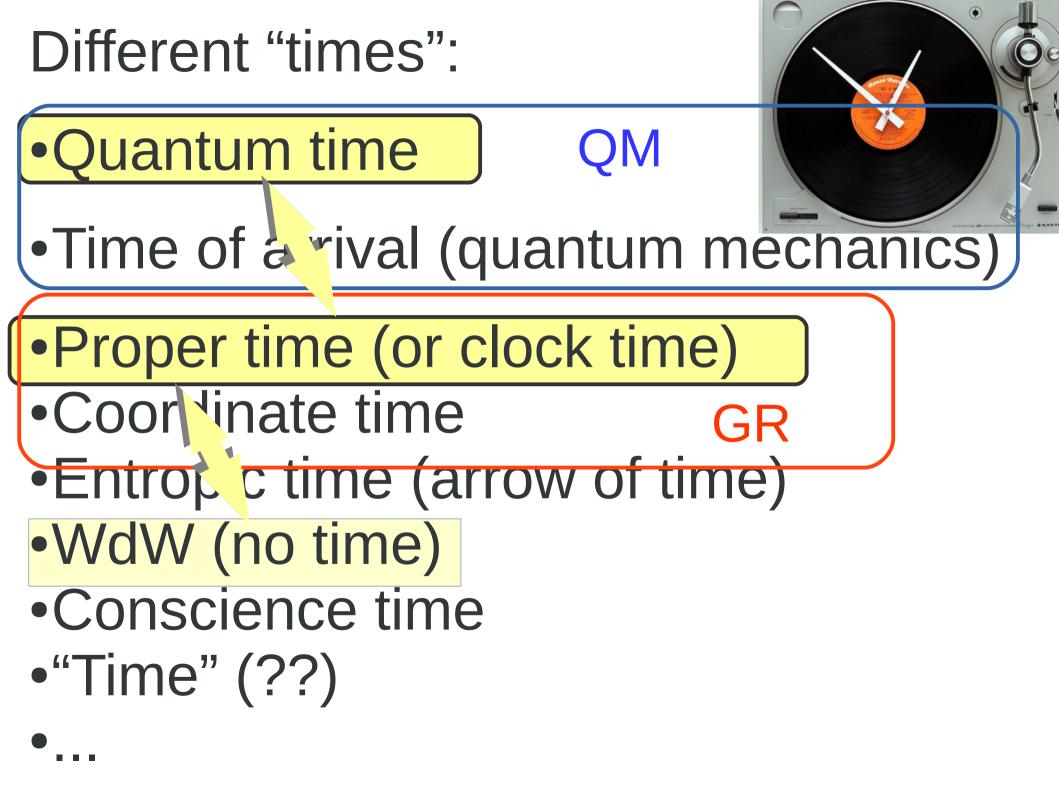
- Different "times":
- Quantum time

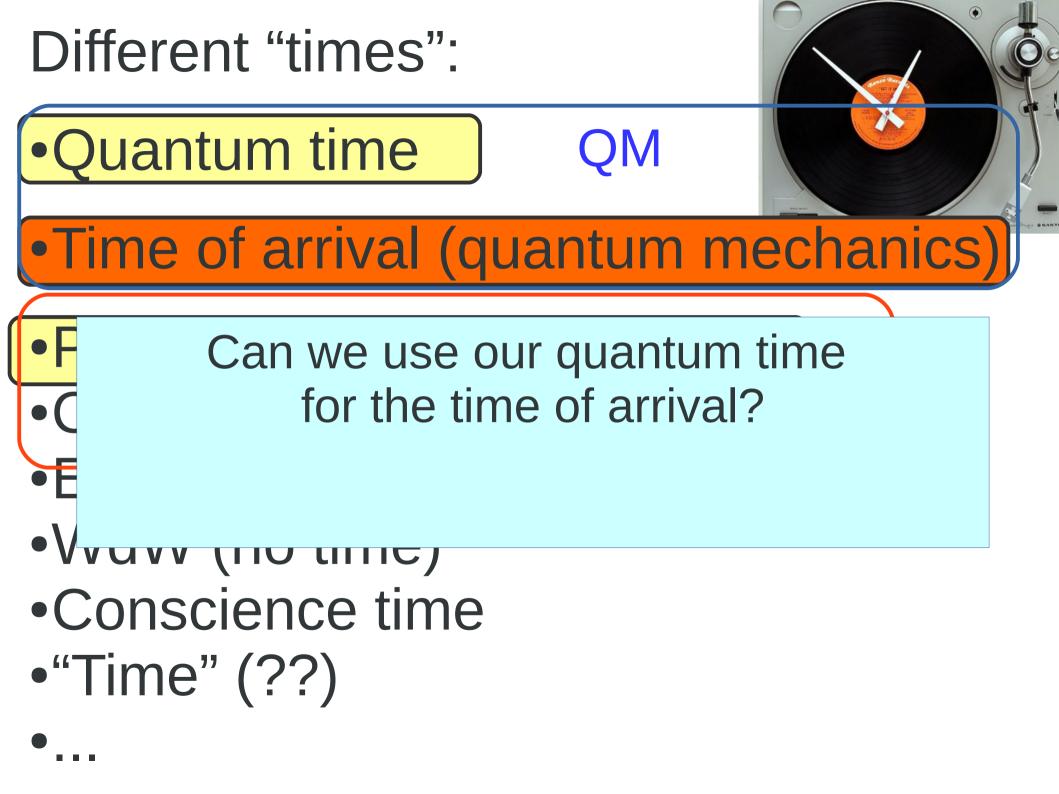
- •Time of arrival (quantum mechanics)
- Proper time (or clock time)
- Coordinate time
- Entropic time (arrow of time)
- •WdW (no time)
- Conscience time
- •"Time" (??)

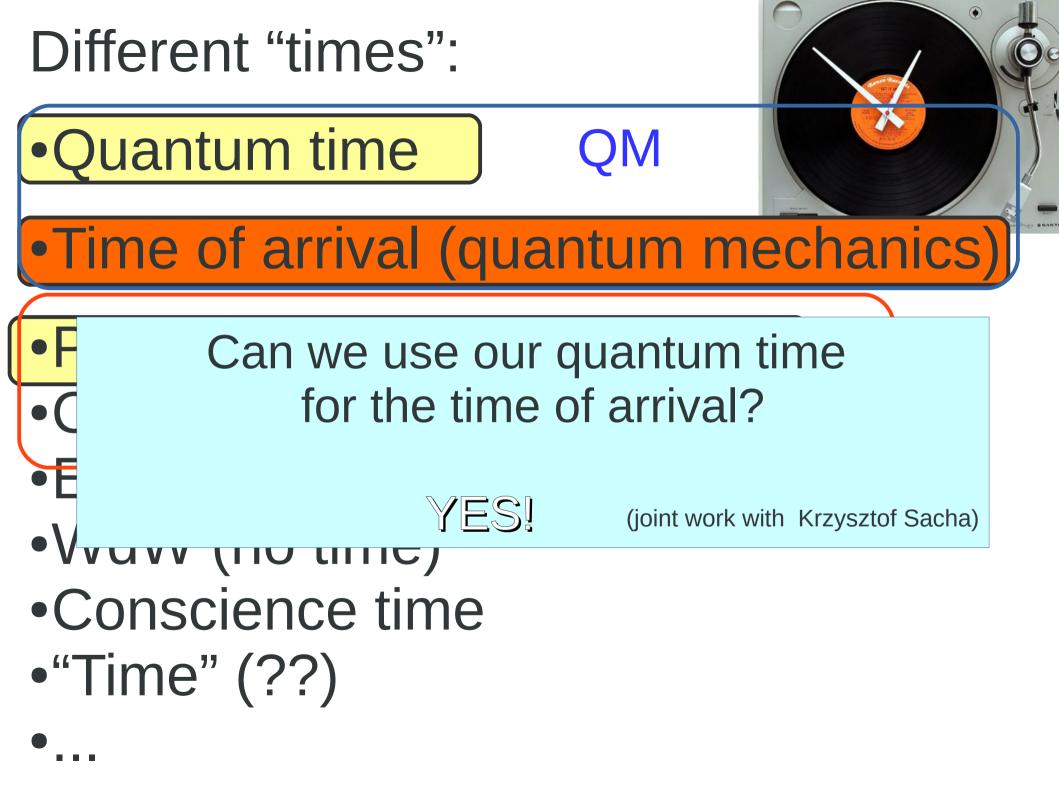
Different "times": •Quantum time QM Time of arrival (quantum mechanics)

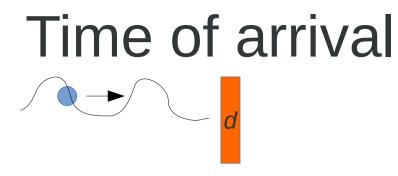
 Proper time (or clock time) GR

- Coordinate time
- Entropic time (arrow of time)
- •WdW (no time)
- Conscience time
- •"Time" (??)



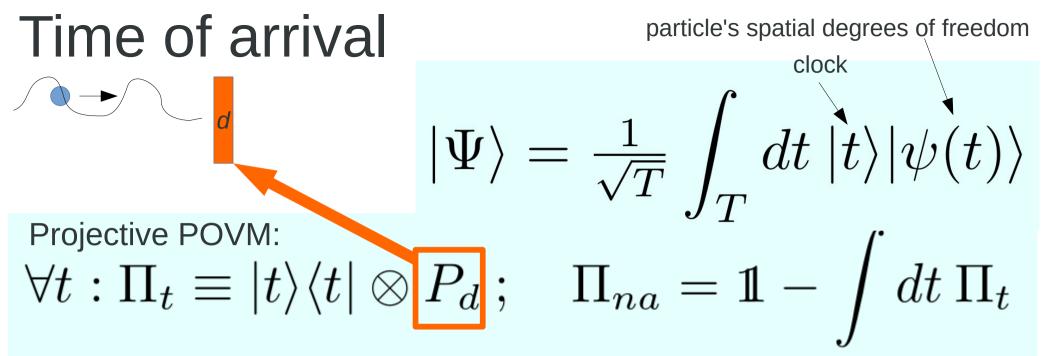




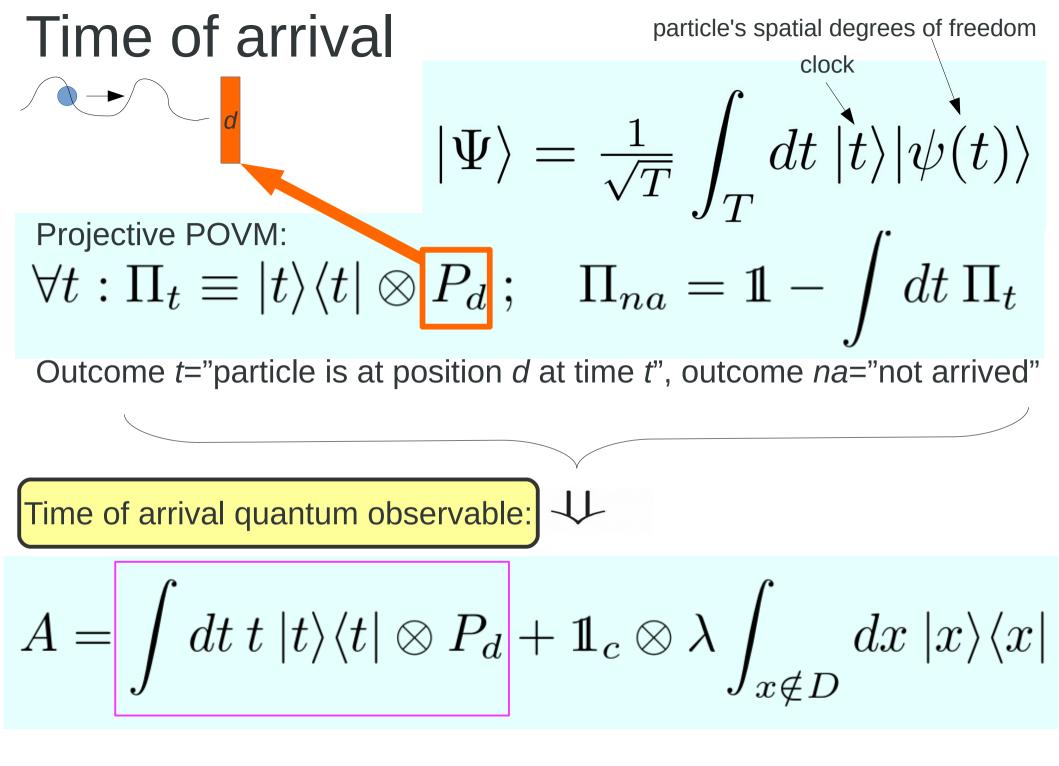


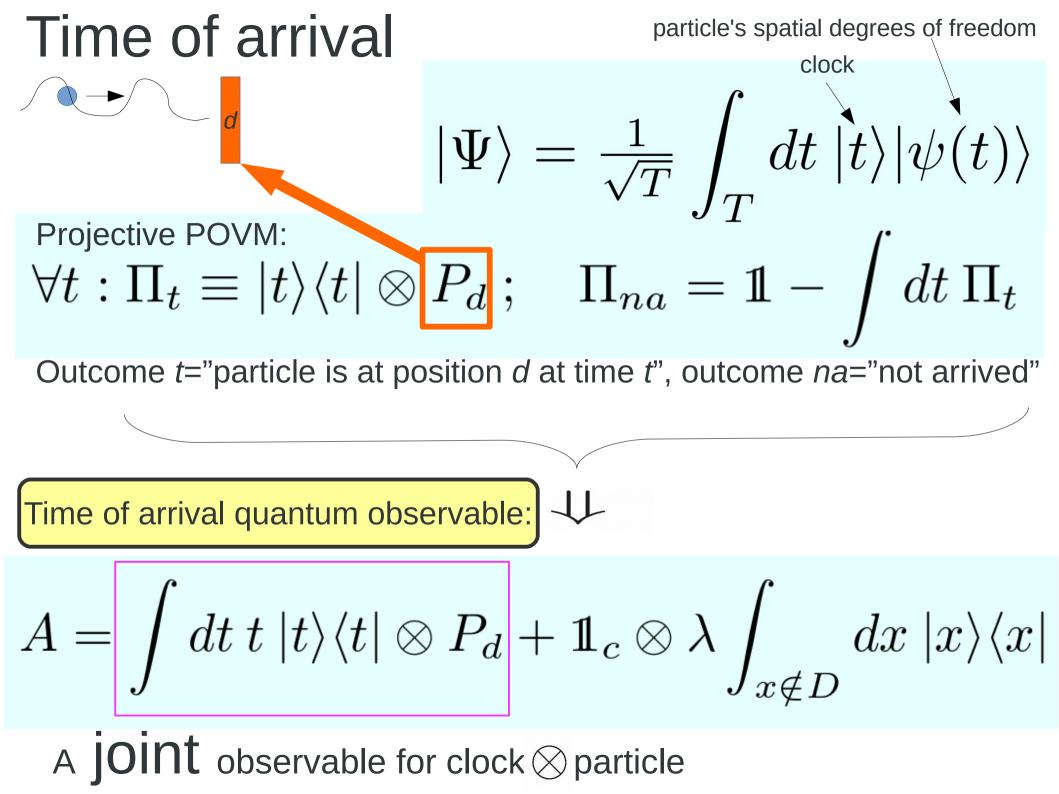
particle's spatial degrees of freedom

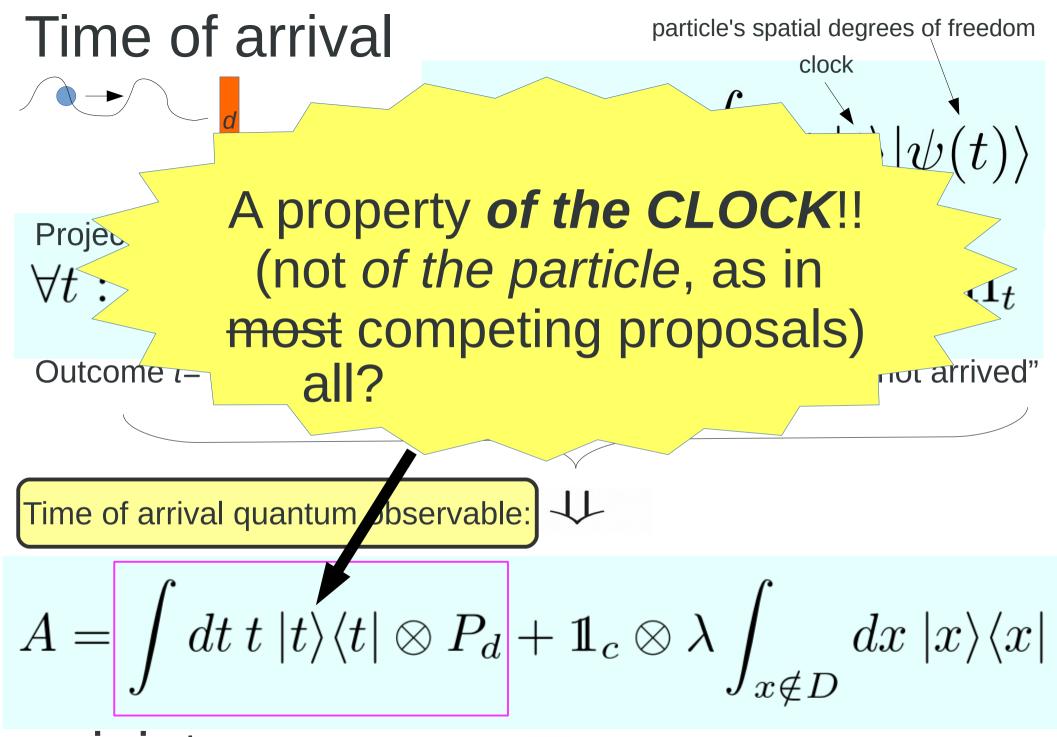
$$|\Psi\rangle = \frac{1}{\sqrt{T}} \int_{T} dt \, |t\rangle |\psi(t)\rangle$$



Outcome *t*="particle is at position *d* at time *t*", outcome *na*="not arrived"







A **JOINT** observable for clock \otimes particle

Time of arrival

$$|\Psi\rangle = \frac{1}{\sqrt{T}} \int_{T} dt |t\rangle |\psi(t)\rangle$$
Projective POVM:
 $\forall t : \Pi_t \equiv |t\rangle \langle t| \otimes P_d$; $\Pi_{na} = \mathbb{1} - \int dt \Pi_t$
Outcome *t*="particle is at position *d* at time *t*", outcome *na*="not arrived"
 Ψ
 $p(t, x = d) = \text{Tr}[|\Psi\rangle \langle \Psi| \Pi_t]$
Born's rule

Time of arrival

$$|\Psi\rangle = \frac{1}{\sqrt{T}} \int_{T} dt |t\rangle |\psi(t)\rangle$$
Projective POVM:
 $\forall t : \Pi_t \equiv |t\rangle \langle t| \otimes P_d$; $\Pi_{na} = \mathbf{1} - \int dt \Pi_t$
Outcome *t*="particle is at position *d* at time *t*", outcome *na*="not arrived"
 Ψ
 $p(t, x = d) = \text{Tr}[|\Psi\rangle \langle \Psi|\Pi_t] = \frac{1}{T} |\psi(d|t)|^2$,
Born's rule
with $\psi(x|t) \equiv \langle x|\psi(t)\rangle$

Time of arrival
particle's spatial degrees of freedom

$$|\Psi\rangle = \frac{1}{\sqrt{T}} \int_{T} dt |t\rangle |\psi(t)\rangle$$
Projective POVM:
 $\forall t : \Pi_t \equiv |t\rangle \langle t| \otimes P_d$; $\Pi_{na} = \mathbf{1} - \int dt \Pi_t$
Outcome t="particle is at position d at time t", outcome na="not arrived"
 Ψ
 $p(t, x = d) = \text{Tr}[|\Psi\rangle \langle \Psi|\Pi_t] = \frac{1}{T} |\psi(d|t)|^2$,
Born's rule
 ψ
 $\psi(x|t) \equiv \langle x|\psi(t)\rangle$
 $p(t|x = d) = \frac{p(t, x = d)}{p(x)}$

Time of arrival

$$|\Psi\rangle = \frac{1}{\sqrt{T}} \int_{T} dt |t\rangle |\psi(t)\rangle$$
Projective POVM:
 $\forall t : \Pi_t \equiv |t\rangle \langle t| \otimes P_d$; $\Pi_{na} = \mathbf{1} - \int dt \Pi_t$
Outcome *t*="particle is at position *d* at time *t*", outcome *na*="not arrived"
 Ψ
 $p(t, x = d) = \text{Tr}[|\Psi\rangle \langle \Psi|\Pi_t] = \frac{1}{T} |\psi(d|t)|^2$,
Born's rule
 ψ
 $\psi(x|t) \equiv \langle x|\psi(t)\rangle$
 $p(t|x = d) = \frac{p(t, x = d)}{p(x)} = \frac{|\psi(d|t)|^2}{\int_T dt |\psi(d|t)|^2}$,
Time of arrival prob. distribution

 take the projector for the particle at d and for the clock at t.

- take the projector for the particle at d and for the clock at t.
- build a joint observable from this

- take the projector for the particle at d and for the clock at t.
- build a joint observable from this
- from the joint probability of clock+particle, get the clock probability through the Bayes rule.

Only "time of arrival"?

- Only "time of arrival"? \rightarrow NO! \qquad Extensions to other time measurements:
- a generic time measurement is
- "At what time did the event *E* happen?"

Only "time of arrival"? → NO!

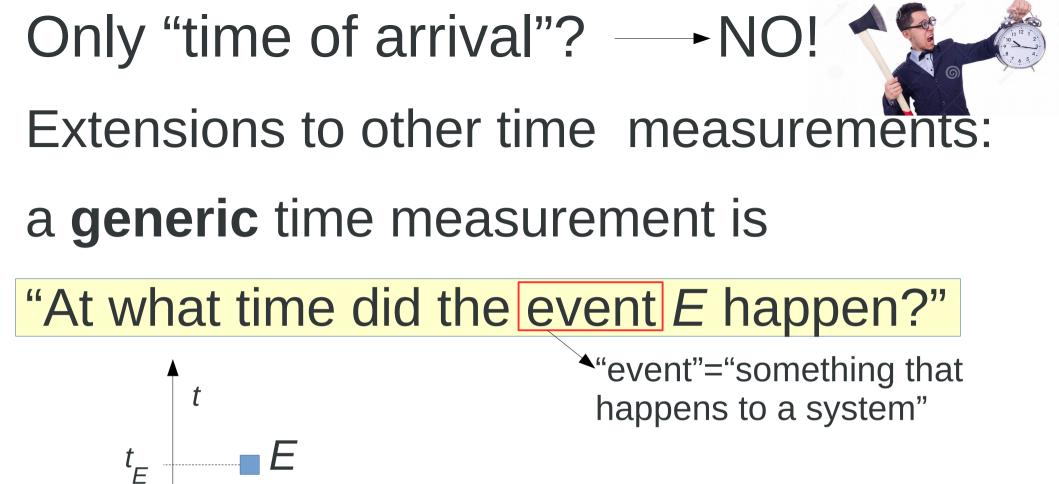
Extensions to other time measurements:

a generic time measurement is

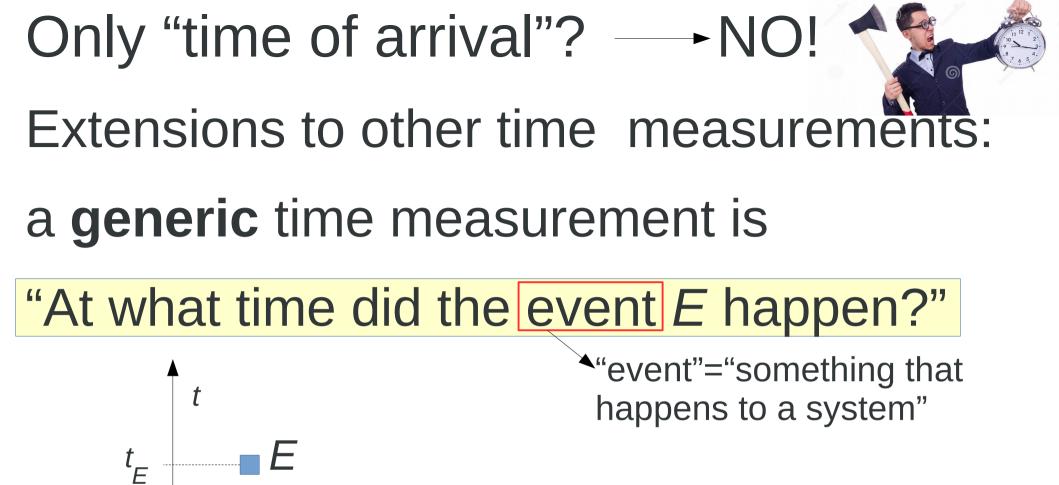
"At what time did the event *E* happen?"

 t_{E}

"event"="something that happens to a system"



Use the same trick: a joint projector on the time and on the system (the projector on the system referring to the event *E*)



Use the same trick: a joint projector on the time and on the system (the projector on the system referring to the event E)

e.g. "at what time is the spin up?" The projector is $|\uparrow\rangle\langle\uparrow|$

for observables can be done:

- Expectation values
- Probability distributions
- •Eigenstates, eigenvalues, etc.

- Describe situations that prev prop
 - **COULD NOT** (multiple pass, stationary particle, etc.)

- Describe situations that prev prop
 - **Could not** (multiple pass, stationary particle, etc.)
- •Extension to arbitrary events

- Describe situations that prev prop
 - **Could not** (multiple pass, stationary particle, etc.)
- •Extension to arbitrary events
- Possibility of describing multiple clocks

- Describe situations that prev prop
 - **Could not** (multiple pass, stationary particle, etc.)
- •Extension to arbitrary events
- Possibility of describing multiple clocks
- Testable differences

- Describe situations that prev prop
 - **Could not** (multiple pass, stationary particle, etc.)
- •Extension to arbitrary events
- Possibility of describing multiple clocks
- Testable differences: experiment!

Criticisms to time quantizations

10

mon

The Pauli argument

Pauli: "time **cannot be quantized**, because a time operator that is a generator of energy translations implies that the energy is unbounded (also from below)"

The Peres argument

Peres argument: "if energy generates time translations and momentum generates position translations, then the Hamiltonian and the momentum operator should commute always"

(not intended as a criticism against quantization of time)

The Peres argument

Peres argument: "if energy generates time translations and momentum generates position translations, then the Hamiltonian and the momentum operator should commute always"

(not intended as a criticism against quantization of time)

• in conventional qm, time is not a dynamical variable \Rightarrow no problem.

The Peres argument

Peres argument: "if energy generates time translations and momentum generates position translations, then the Hamiltonian and the momentum operator should commute always"

(not intended as a criticism against quantization of time)

• in conventional qm, time is not a dynamical variable \Rightarrow no problem.

• in our case, time is a dynamical variable, but its translations are NOT generated by \hat{H}_S (but by $\hat{\Omega}$)

Kuchar: "measurements of a system at two times will give the wrong statistics: the first measurement "collapses" the time d.o.f. and the system remains stuck"

Kuchar: "measurements of a system at two times will give the wrong statistics: the first measurement "collapses" the time d.o.f. and the system remains stuck"

Kuchar's objection killed PaW's argument

Kuchar: "measurements of a system at two times will give the wrong statistics: the first measurement "collapses" the time d.o.f. and the system remains stuck"

$$|\Psi\rangle\rangle = \int dt \ |t\rangle_T \otimes |\psi(t)\rangle_S$$

time t

 $|\psi(t)\rangle$

after a measurement of time, the state collapses to $|\psi(t)\rangle$: successive measurements give wrong statistics: no more evolution

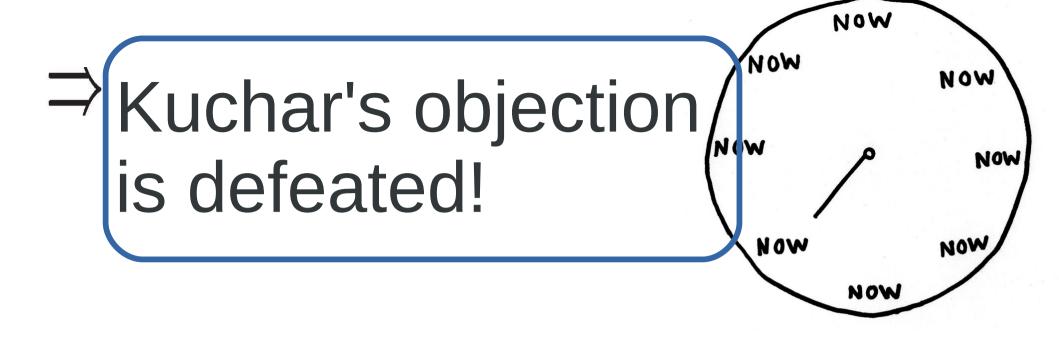
Kuchar: "measurements of a system at two times will give the wrong statistics: the first measurement "collapses" the time d.o.f. and the system remains stuck"

a careful formalization of **what a two-time measurement is** solves the problem!

Kuchar: "measurements of a system at two times will give the wrong statistics: the first measurement "collapses" the time d.o.f. and the system remains stuck"

a careful formalization of **what a two-time measurement is** solves the problem!

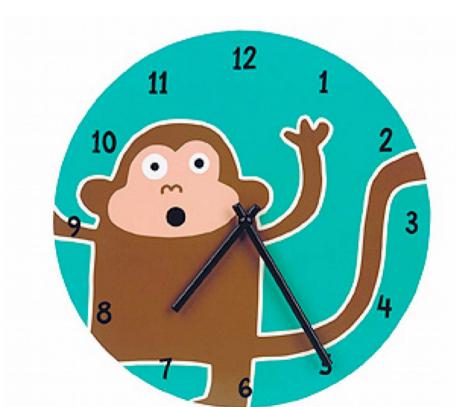
The second measurement is a joint measurement on the system and on the d.o.f. that stored the outcome of the first.



this argument can be extended to POVMS, propagators, etc...

Conclusions

• Time as a quantum degree of freedom



- Time as a quantum degree of freedom
- The conventional formulation: conditioning

- Time as a quantum degree of freedom
- The conventional formulation: conditioning
- Physical interpretation: time Hilbert space
 = clock Hilbert space (but un-necessary)

- Time as a quantum degree of freedom
- The conventional formulation: conditioning
- Physical interpretation: time Hilbert space
 = clock Hilbert space (but un-necessary)
- Quantum time measurements.

- Time as a quantum degree of freedom
- The conventional formulation: conditioning
- Physical interpretation: time Hilbert space
 = clock Hilbert space (but un-necessary)

3

- Quantum time measurements.
- Pauli objections and others..

Take home message

A quantization of spacetime based on conditional probability amplitudes

quantum time: PRD **92**, 045033 Pauli objection: Found. Phys. **47**, 1597 time observable: arXiv:1810.12869

Lorenzo Maccone maccone@unipv.it

- sostituire WdW con constraint for q reference frames
- aggiungere il caso di multiple clocks

Extend to arbitrary states of the clock:

Extend to arbitrary states of the clock:

$$|\Phi\rangle\rangle = \int dt \,\phi(t) \,|t\rangle_T \otimes |\psi(t)\rangle_S \,,$$

Extend to arbitrary states of the clock:

$$|\Phi\rangle\rangle = \int dt \,\phi(t) \,|t\rangle_T \otimes |\psi(t)\rangle_S \implies$$

Extend to arbitrary states of the clock:

$|\Phi\rangle\rangle = \int dt \,\phi(t) \,|t\rangle_T \otimes |\psi(t)\rangle_S \implies$

a quantum Bayes rule! for probability amplitudes

extended conditioning

Extend to arbitrary states of the clock:

$$|\Phi\rangle\rangle = \int dt \,\phi(t) \,|t\rangle_T \otimes |\psi(t)\rangle_S \implies$$

a quantum Bayes rule! for probability amplitudes

and the WdW equation becomes:

extended conditioning

Extend to arbitrary states of the clock:

$$|\Phi\rangle\rangle = \int dt \,\phi(t) \,|t\rangle_T \otimes |\psi(t)\rangle_S \implies$$

a quantum Bayes rule! for probability amplitudes

and the WdW equation becomes:

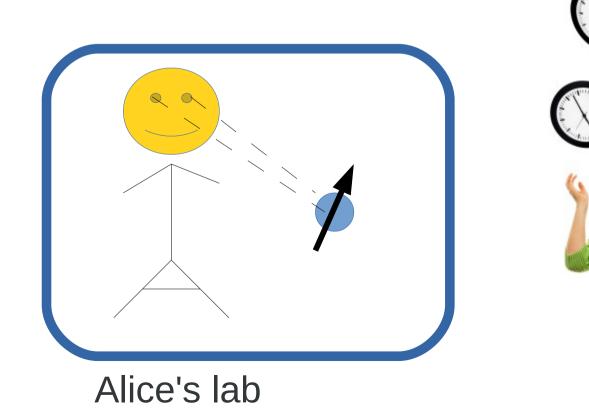
appropriate for a beginning of time?!?

What are the hypotheses for this argument? Use von Neumann's quantum mechanics! (Born's rule and all that)

- Use von Neumann's quantum mechanics! (Born's rule and all that)
- While we do admit that a unitary description of a measurement apparatus must exist, we still work in the conventional quantum framework.

Use von Neumann's quantum mechanics! (Born's rule and all that)

While we do admit that a unitary description of a measurement apparatus must exist, we still work in the conventional quantum framework.



Use von Neumann's quantum mechanics! (Born's rule and all that)

While we do admit that a unitary description of a measurement apparatus must exist we still work in the conventional quantum framework.

Bob's point

Alice's lab

of view

same treatment of time and space in qm

same treatment of time and space in qm

Easy to quantize the position in space, but **difficult** to quantize the position in time

WHY?!?

same treatment of time and space in qm

Easy to quantize the position in space, but **difficult** to quantize the position in time

WHY?!?

because we usually quantize "systems" (e.g. particles) that are **extended in time and localized in space** (e.g. Newton-Wigner position op: the position of a particle **at time t.**)

same treatment of time and space in qm

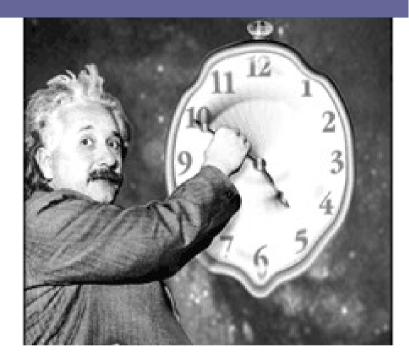
Easy to quantize the position in space, but **difficult** to quantize the position in time

WHY?!?

because we usually quantize "systems" (e.g. particles) that are **extended in time and localized in space** (e.g. Newton-Wigner position op: the position of a particle **at time t.**)

OUR FRAMEWORK permits the QUANTIZATION OF EVENTS

In what follows In what follows



Just consider time (not spacetime)

Alternative way of defeating Kuchar's objection the Gambini et al. proposal [PRD 79,041501]

Use Rovelli's evolving constants of motion Average over the inaccessible coordinate time

$$p(d|t) = \frac{\int dT \operatorname{Tr}[P_{d,t}(T)\rho]}{\int dT \operatorname{Tr}[P_t(T)\rho]}$$

two time measurements:

$$p(d = d'|t_f, d_i, t_i) = \frac{\int dT \int dT' \operatorname{Tr}[P_{d', t_f}(T) P_{d_i, t_i}(T') \rho P_{d_i, t_i}(T')]}{\int dT \int dT' \operatorname{Tr}[P_{t_f}(T) P_{d_i, t_i}(T') \rho P_{d_i, t_i}(T')]},$$

Alternative way of defeating Kuchar's objection the Gambini et al. proposal [PRD 79,041501]

Use Rovelli's evolving constants of motion Average over the inaccessible coordinate time

$$p(d|t) = \frac{\int dT \operatorname{Tr}[P_{d,t}(T)\rho]}{\int dT \operatorname{Tr}[P_t(T)\rho]}$$

two time measurements:

$$p(d = d'|t_f, d_i, t_i) = \frac{\int dT \int dT' \operatorname{Tr}[P_{d', t_f}(T) P_{d_i, t_i}(T') \rho P_{d_i, t_i}(T')]}{\int dT \int dT' \operatorname{Tr}[P_{t_f}(T) P_{d_i, t_i}(T') \rho P_{d_i, t_i}(T')]},$$

Comparison to Stuekelberg's qm $|\Psi_{stu}\rangle = \int dt \int d^3x \, \Psi_{stu}(\vec{x},t) |\vec{x}\rangle |t\rangle$ prob. ampl. to find a particle in **spacetime position** *x*,*y*,*z*,*t*. $\int dt \, d^3x |\Psi_{stu}|^2 = 1$ (good only for qft?) $|\Psi\rangle\rangle = \int_{-\infty}^{+\infty} dt \; |t\rangle|\psi(t)\rangle$ **Conditional** prob. ampl. prob. ampl. to find a particle at x,y,z need a framework given that the time is t where we can $|\Psi_{screen}\rangle\rangle = \int_{-\infty}^{+\infty} dz \; |z\rangle|\chi(z)\rangle$ condition on all! (qm for events?) prob. ampl. to find a particle at x,y and

time t **given that** the screen is at z 🚄

Question for you:

WHAT is an event?!??

a good definition? ("intersection of world lines" no good for qm)

prob. ampl. to find a particle at x,y,z given that the time is t

$$|\Psi_{screen}\rangle\rangle = \int_{-\infty}^{+\infty} dz \; |z\rangle|\chi(z)\rangle$$

prob. ampl. to find a particle at x,y and time t **given that** the screen is at z —

need a framework where we can condition on all! (qm for events?)

Pauli: "time **cannot be quantized**, because a time operator that is a generator of energy translations implies that the energy is unbounded (also from below)"

Pauli: "time **cannot be quantized**, because a time operator that is a generator of energy translations implies that the energy is unbounded (also from below)"

8765

i.e. $[\hat{T}, \hat{H}_S] = i\hbar \Rightarrow \lambda(\hat{H}_S) \in (-\infty, +\infty)$

Pauli: "time **cannot be quantized**, because a time operator that is a generator of energy translations implies that the energy is unbounded (also from below)"

i.e.
$$[\hat{T}, \hat{H}_S] = i\hbar \Rightarrow \lambda(\hat{H}_S) \in (-\infty, +\infty)$$

... but wait!! In our case we have $[\hat{T}, \hat{\Omega}] = i\hbar \Rightarrow \lambda(\hat{\Omega}) \in (-\infty, +\infty)$

Pauli: "time **cannot be quantized**, because a time operator that is a generator of energy translations implies that the energy is unbounded (also from below)"

i.e.
$$[\hat{T}, \hat{H}_S] = i\hbar \Rightarrow \lambda(\hat{H}_S) \in (-\infty, +\infty)$$

... but wait!! In our case we have

$$\hat{T}, \hat{\Omega}] = i\hbar \Rightarrow \lambda(\hat{\Omega}) \in (-\infty, +\infty)$$

only the clock energy (momentum) must have infinite spectrum (obvious if we want it to take all values on a line).

NOT the system Hamiltonian \hat{H}_S !!!

Pauli: "time **cannot be quantized**, because a time operator that is a generator of energy translations implies that the energy is unbounded (also from below)"

i.e.
$$[\hat{T}, \hat{H}_S] = i\hbar \Rightarrow \lambda(\hat{H}_S) \in (-\infty, +\infty)$$

... but wait!! In our case we have

$$\hat{T}, \hat{\Omega}] = i\hbar \Rightarrow \lambda(\hat{\Omega}) \in (-\infty, +\infty)$$

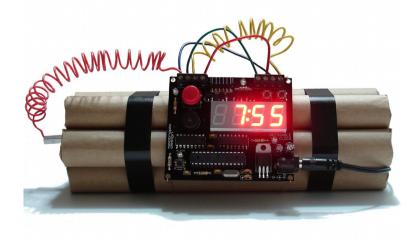
only the clock energy (momentum) must have infinite spectrum (obvious if we want it to take all values on a line).

NOT the system Hamiltonian \hat{H}_{S} .

can be anything In other words, the **Pauli argument fails** in our case because the energy-time connection is not enforced dynamically as

$$[\hat{T}, \hat{H}_S] = i\hbar$$

but as a constraint on the physical states through a WdW eq: $\hat{\mathbb{J}}|\Psi
angle
angle=0$

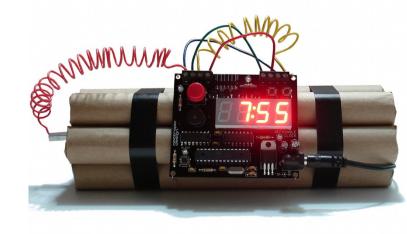


In other words, the **Pauli argument fails** in our case because the energy-time connection is not enforced dynamically as

$$[\hat{T}, \hat{H}_S] = i\hbar$$

but as a constraint on the physical states through a WdW eq: $\hat{\mathbb{J}}|\Psi\rangle
angle=0$

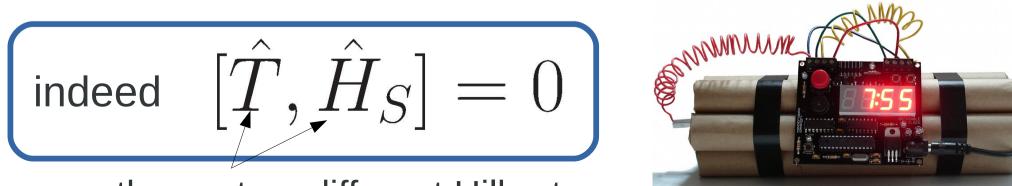
indeed
$$[\hat{T},\hat{H}_S]=0$$



In other words, the **Pauli argument fails** in our case because the energy-time connection is not enforced dynamically as

$$[\hat{T}, \hat{H}_S] = i\hbar$$

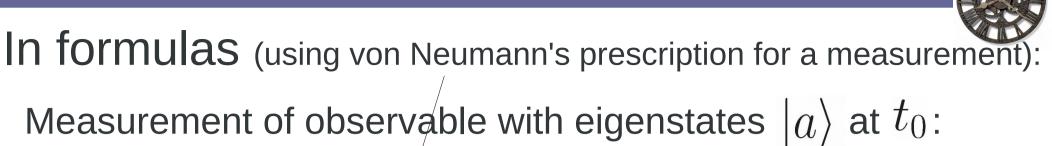
but as a constraint on the physical states through a WdW eq: $\hat{\mathbb{J}}|\Psi\rangle
angle=0$



they act on different Hilbert spaces

In formulas (using von Neumann's prescription for a measurement):

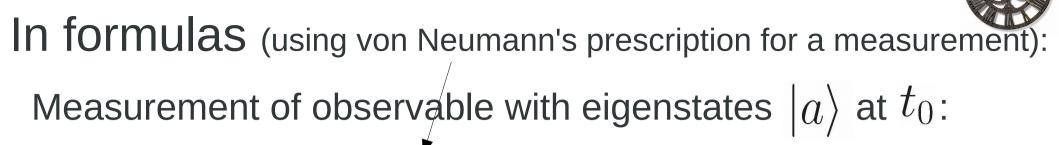
The Kuchar argument against PaW



$$|\psi(t_0)\rangle_S|\mathbf{r}\rangle_m \xrightarrow{U} |\psi'\rangle_{Sm} \equiv \sum_a \psi_a |a\rangle_S|\mathbf{a}\rangle_m$$

$$|\psi(t_0)\rangle = \sum_a \psi_a(t_0)|a\rangle$$

The Kuchar argument against PaW



$$|\psi(t_0)\rangle_S|\mathbf{r}\rangle_m \xrightarrow{U} |\psi'\rangle_{Sm} \equiv \sum_a \psi_a |a\rangle_S|\mathbf{a}\rangle_m$$

$$\begin{split} |\psi(t_0)\rangle &= \sum_{a} \psi_a(t_0) |a\rangle \\ |\Psi\rangle\rangle &= \int_{-\infty}^{t_0} dt |\psi(t)\rangle_S |r\rangle_m^N |t\rangle_T + \\ &\searrow_{\text{memory dof}} \\ \int_{t_0}^{\infty} dt \sum_{a} \frac{\psi_a(t_0)\tilde{U}(t-t_0) |a\rangle_S |a\rangle_m^N |t\rangle_T \end{split}$$

In formulas (using von Neumann's prescription for a measurement):

Measurement of observable with eigenstates $|a\rangle$ at t_0 :

$$\begin{split} |\Psi\rangle\rangle &= \int_{-\infty}^{t_0} dt |\psi(t)\rangle_S |r\rangle_m^N |t\rangle_T + \\ &\searrow_{\text{memory dof}} \\ \int_{t_0}^{\infty} dt \sum_a \frac{\psi_a(t_0)\tilde{U}(t-t_0)|a\rangle_S |a\rangle_m^N |t\rangle_T \end{split}$$

$$\Rightarrow p(a|t_0) = |\langle a|\psi(t_0)\rangle|^2 \equiv ||_{\mathbf{m}} \langle a|_T \langle t_0|\Psi\rangle\rangle|^2$$
$$= |\psi_a(t_0)|^2 \quad \text{(Born's rule)}$$

two time measurements: same idea!!

two time measurements: same idea!! $|a\rangle \text{ at } t_0 \text{ and } |b\rangle \text{ at } t_1 :$ $|\Psi\rangle\rangle = \int_{-\infty}^{t_0} dt \dots + \int_{t_0}^{t_1} dt \sum_a \psi_a(t_0) U(t-t_0) |a\rangle_S |a\rangle_m^N |t\rangle_T$ $+ \int_{t_1}^{\infty} dt \sum_{ab} \psi_a(t_0) U(t-t_1) |b\rangle_S \langle b| U(t-t_0) |a\rangle_S |a\rangle_m^N |b\rangle_{m'}^N |t\rangle_T$

two time measurements: same idea!! $|a\rangle$ at t_0 and $|b\rangle$ at t_1 : $|\Psi\rangle\rangle = \int_{-\infty}^{t_0} dt \dots + \int_{t_0}^{t_1} dt \sum \psi_a(t_0) U(t-t_0) |a\rangle_S |a\rangle_m^{+} |r\rangle_{m'}^{+} |t\rangle_T$ $+\int_{1}^{\infty} dt \sum \psi_{a}(t_{0})U(t-t_{1})|b\rangle_{S}\langle b|U(t-t_{0})|a\rangle_{S}|a\rangle_{m}^{N}|b\rangle_{m'}^{N}|t\rangle_{T}$ **Bayes** rule $p(b|a,t_1) \stackrel{\checkmark}{=} \frac{p(b,a,t_1)}{p(a,t_1)} = \frac{\|\langle a|\langle b|\langle t_1|\Psi\rangle\rangle\|^2}{\|\langle a|\langle t_1|\Psi\rangle\rangle\|^2}$

two time measurements: same idea!! $|a\rangle$ at t_0 and $|b\rangle$ at t_1 : $|\Psi\rangle\rangle = \int_{-\infty}^{t_0} dt \dots + \int_{t_0}^{t_1} dt \sum \psi_a(t_0) U(t-t_0) |a\rangle_S |a\rangle_m^N |r\rangle_{m'}^N |t\rangle_T$ $+\int_{a}^{\infty} dt \sum \psi_{a}(t_{0})U(t-t_{1})|b\rangle_{S}\langle b|U(t-t_{0})|a\rangle_{S}|a\rangle_{m}^{N}|b\rangle_{m}^{N}|t\rangle_{T}$ **Bayes** rule $p(b|a,t_1) \stackrel{\checkmark}{=} \frac{p(b,a,t_1)}{p(a,t_1)} = \frac{\|\langle a|\langle b|\langle t_1|\Psi\rangle\rangle\|^2}{\|\langle a|\langle t_1|\Psi\rangle\rangle\|^2}$ $= |\langle b|U(t_1 - t_0)|a\rangle|^2$

