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The Hartman Effect 
 
In 1932, L. A. MacColl reported that when wave packets tunnel through a 

rectangular potential barrier, in one dimension, they appear on the other side of 

the barrier at the same time they first impinge on the barrier. 

In 1962, Thomas Hartman made similar observations – 

This is known as the Hartman effect. 

 

Two observations: 

1.  The portion of the wave packet that tunnels through the barrier travels faster. 

2.  The tunneled particle appears to spend no time under the barrier. 

Arbitrarily wide barrier → arbitrarily large effective velocity. 
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Superluminal Effective Velocities have been reported 

e.g., S. De Leo & P.P. Rotelli  2007, using stationary phase approximation of 

Dirac wavepacket propagation. 

 

Many questions remain: Effective Velocity = Distance / Time 

 
Many means of characterizing time have been proposed. 
 
One generally considers the narrow-in-energy wavepacket limit, and defines a 
mean time related to the derivative of the phase or log-modulus of the 
transmission amplitude with respect to barrier height or particle energy. 
 
We are interested in narrow-in-space wavepackets, and associated arrival time 
distributions: 
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Consider a barrier extending from a to b, and a particle incoming from the left.  It 
is initially localized about z0. 
 
Probability that the particle is not beyond the barrier at time = t : 
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Probability distribution (normalized to total transmission probability) for arrival 
at b: 
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Schrödinger Tunneling through an Eckart Barrier 
 

Husimi transforms of time evolving wavepacket – initially, a gaussian 
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Transmitted fluxes 
 

 
Arrows show arrival time of center of initial gaussian with no barrier. 
Dashed lines are semiclassical approximations. 
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Stationary phase approximation: ( )
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Most probable time: 
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Relativistic Quantum Mechanics – the Dirac Equation 
 
Special Relativity: 
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Goal:  Quantize the above (classical) equation 

The Schrödinger Equation results from quantizing 
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The Klein-Gordon Equation results from quantizing 
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Dirac wanted a first order equation in time: 
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uniquely determines the state at all other times. 
 
The Dirac Equation (in 3+1 dimensions): 
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ψ  is a 4-component vector 
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If V = V(z) the above reduces to the 1+1 dimensional Dirac equation. 

ψ  is now a 2-component vector - spin is conserved 
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The Time Independent Dirac Equation - 1+1 dimensional 
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Positive energy solutions (constant V): 
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Solutions for piece-wise constant potential are obtained by imposing continuity 

of ψ  at the boundaries – transfer matrix solution 
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Dirac Wavepacket Dynamics 
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Dirac Flux and arrival time distribution: 
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Semiclassical approximation (stationary phase): 
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Non-relativistic and Relativistic Arrival time distributions 
 

distance unit = reduced Compton wavelength = ƛ = 3.86 x 10-13 m 
time unit = ƛ / c = 1.29 x 10-21 s = 1.29 zs 

energy unit = electron rest mass energy = 0.511 MeV 

 

Potential is a staircase with ten steps up, then 10 steps down. 
Step width = 104 and 1, respectively. 

 

v = 10−4    δx = 105    Vtop = 10−8 v = 0.99    δx = 10    Vtop = 7 
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Rectangular Barrier δx = 9 
 

v = 0.99    w = 1    Vtop = 6.8 
 
 
 
 
 
 
 

 
v = 0.99    w = 10    Vtop = 6.8 
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v = 0.99    w = 20    Vtop = 6.8 
 
 
 
 
 
 
 
 

|Integrand| for three z values 
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Rectangular Barrier with w = 20 

v = 0.75    δx = 10    Vtop = 0.9 

Vtop = 1.1 
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v = 0.99    δx = 10    Vtop = 6.6 

Vtop = 6.8 
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Wavepacket Dynamics 
 

 
 

0 1 2 3 
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The Generalized Hartman Effect 
 
It has been reported that, in the opaque barrier limit, the phase time is 
independent of the spacing between successive barriers. 
V. S. Olkhovsky, E. Recami and G. Salesi, 2002. 
 

Series of Barriers 
 
v = 0.99    δx = 9   w = 10, 5, 10    Vtop = 6.8 

 

We can no longer use a simple 
Gaussian in p space (p is just a 
proxy for energy).  The energy 
eigenfunctions, summed with 
Gaussian weighting in p, do not 
give a Gaussian in z space. 
 
We use singular value 
decomposition to invert 
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v = 0.99    δx = 9    w = 5, 1, 5    Vtop = 6.8 

 
v = 0.99    δx = 9   w = 5, 10, 5    Vtop = 6.8 
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Integrand| for three z values 
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v = 0.99    δx = 9    w = 5, 10, 5, 10, 5    Vtop = 6.8 

 
free particle  v = 0.99    δx = 9    Vtop = 0 

 
v = 0.99    δx = 9    w = 5, 10, 5, 10, 5    Vtop = 6.8 
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Moving Barrier 
 
Lorentz transformation relates space and time coordinates in the observer and 
barrier frames of reference. 
 

ve = 0.5  and  vbarrier = −0.4 
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ve = 0  and  vbarrier = −0.9 
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ve = 0.99  and  vbarrier = 0    δx = 9    w = 5    Vtop = 6.8 

 
 

ve = 0.8  and  vbarrier = −0.9    δx = 9    w = 5    Vtop = 6.8 
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ve = 0  and  vbarrier = −0.99    δx = 9    w = 5    Vtop = 6.8 
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